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ABSTRACT 

The retention mechanism in reversed-phase liquid chromatography (RPLC) with silica particles modified with surface-grafted 
alkyl chains cannot be fully understood unless the specific properties of the surface layers, such as the configurational constraints 
of terminally attached chains, are taken into account. The commonly accepted view that the main factor governing RPLC 
retention behaviour is constituted by solute-solvent interactions in the bulk mobile phase is supported by useful but simplified 
theories based on solvation as in bulk liquids. Solvation in bulk liquids depends on the free energy to create “cavities” for solute 
molecules in mobile and stationary phases. 

This paper first reviews possibilities and shortcomings of regular solution theories, where the partition coefficient is expressed in 
terms of the Flory-Huggins (FH) interaction parameters for the solute. Where enthalpic effects dominate, these parameters can 
be obtained from experimental data or from generalized thermodynamic functions expressed as Hildebrand’s solubility 
parameter, 6, representing the square root of the cohesive energy density. 

In RPLC with terminally attached chains on the support, entropy effects arising from the molecular organization of chains are 
also important, and entropic expulsion of solute molecules from the stationary phase is expected to take place. RPLC practice 
indicates that the nature of the grafted layer [e.g., flexibility of grafted chains and “phase transitions”, geometrical effects, chain 
length effects, chain branching and surface effects (coverage and hydroxyls)] indeed influences the “adsorptive” and retentive 
capacity of the bonded stationary layer. Theories specially designed for grafted layers are reviewed starting with (oversimplified) 
rod-like chain models, followed by several, more recent, lattice theories, which are based .on extensions of the Flory-Huggins 
lattice theory for polymers in solution. These theories, when applied to the RPLC retention mechanism, take into account some 
aspects of the molecular organization in the grafted layer, but are still subject to simplifying assumptions. 

A more general approach is based on the self-consistent field theory for adsorption (SCFA) originally developed by Scheutjens 

* Corresponding author. 
* Present address: Philips Natuurkundig Laboratorium, PO Box 8tJOO0, 5600 JA Eindhoven, Netherlands. 

0021-9673/93/$24.00 @ 1993 Elsevier Science Publishers B.V. All rights reserved 



R. Tijssen et al. I J. Chromatogr. A 656 (1993) 135-l% 

and Fleer to describe polymer adsorption, where in essence the segment density distribution is found resulting from minimization 
of free energy. Extending the SCFA theory to allow for RPLC conditions provides insight into the effects of the solvent quality 
(modifier content), collapse of the chain phase, the grafted and solute’s chain lengths and the grafting density (surface coverage) 
on the segment density profile. Both aliphatic and amphiphilic solute molecules appear to be distributed non-uniformly in the 
grafted layer and are accumulated in the boundary region near the interface between chain phase and bulk solvent. Using the 
related theory by Leermakers and Scheutjens [self-consistent anisotropic field (SCAF) theory], shape selectivity is shown for 
flexible chain, star- and rod-like solutes, chain length effects and alignment also being found. In the presence of a specific affinity 
for the silica surface, due to residual hydroxyls, for both polar solvent molecules and solute molecules with polar groups, both the 
SCFA and the SCAF theories predict an accumulation of polar segments near the silica surface which is fairly pronounced, 
displacing most of the (unattached) non-polar segments more towards the chain phase surface. 
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1. INTRODUCTION 

Currently, the main HPLC technique used is 
reversed-phase liquid chromatography (RPLC) . 
Because of its flexibility towards a wide variety 
of solutes and mobile phase systems, RPLC is 
carried out almost exclusively with chemically 
bonded stationary phases. Most applications are 
achieved on silica support particles modified with 
alkyl chains (1-18 carbons long) grafted to the 
support surface by a monomeric reaction 
scheme, where a single group reacts with the 
silica surface to form a siloxane bridge. Typical 
surface coverages obtained with these monomer- 
ic phases are in the range 2.5-4.4 ~mollm*, i.e., 
20-60% of the expected maximum coverage of 
about 8 pmol/m* {limited to that value by either 
available hydroxyl sites on activated silicas [l] or 
the maximum packing density of (alkane-type) 
chains in crystals}. In this paper we do not 
consider “polymeric” and “resin-type” phases, 
where multi-functional reaction schemes are 
used. Chain branching will be treated for the 
solute, but not for the stationary chain phase. 
The potential influence of residual adsorption at 
non-bonded surface hydroxyl sites also receives 
some attention. 

Knowledge of the mechanism of the retention 
of solutes in separation columns packed with 
such chemically modified or “hairy” surfaces is 
of the utmost importance for the control of 
separation performance and analysis time. This 
mechanism is as yet not fully understood, and it 
is still a matter of debate in the chromatographic 
literature [2-181 whether solutes show an ad- 
sorptive behaviour on the chemically bonded 
phases, or a sorptive “bulk-like” partitioning 
mechanism, by which solutes are embedded 
within the chemical!y bonded phase. 

To shed light on this issue and the mechanisms 
of retention in general, we need a theory that 
describes both the mobile and the stationary 
phases, and which pays due attention to con- 
formational aspects of retention in a grafted 
layer. Further, this theory should provide insight 
into aspects such as the extent to which alkyl- 
modified surfaces can be swollen by solvent 
penetration, the dependence on alkyl chain 
length and the nature of the mobile phase 

solvent. It is speculated that solvents compatible 
with alkanes tend to swell the surface layer, 
extending the bonded chains perpendicular to 
the solid surface far into the solvent phase, 
whereas incompatible solvents tend to collapse 
the chains upon each other and on to the solid 
surface, thereby minimizing the contacts with the 
“hostile” solvent. In the former situation the 
chain phase may be regarded as “brush’‘-like, 
with the extended chains oriented more or less 
perpendicular to the solid surface and allowing 
maximum penetration by the solvent and solutes. 
In the latter instance, with polar solvents, limited 
solvent penetration can be envisaged, and solute 
penetration in the liquid-like layer of collapsed 
chains is still possible. Martire and Boehm 
[17,18] referred to this qualitative picture as to a 
“breathing” surface, which adjusts itself to main- 
tain its non-polar character. This picture is 
consistent with Monte Carlo computer simula- 
tions [19-221, scaling theories [23,24] and self- 
consistent-field theories [16,20,25-341, to be 
discussed in the following. Summarizing, the 
required theory should account for the stationary 
phase structure and composition, which in turn 
depend on the grafted chain length, its surface 
coverage, the intrinsic stiffness of the bonded 
chains and the nature of the mobile phase 
solvent. We shall discuss the last-mentioned 
aspect first because, as stated, its importance is 
well recognized in chromatographic science and 
becomes apparent directly from the close rela- 
tionship between partitioning and retention pa- 
rameters. 

As commonly accepted, a practically useful 
partition coefficient Kc can be based on average 
molar concentrations C= n/V, n being the 
number of moles of compounds present in a 
(phase) volume V. For very dilute solutions Zi = 
ZjIup, where & is the (average) mole fraction of 
solute i in phase p, and up = M,/p, is the molar 
volume of the phase, M being the molecular 
mass and p the density of the (liquid) phase. As, 
a result, 

K; = E&,, = K&Ju,) (1) 

where KF = .fi,l~i, is the mole-fraction-based 
partition coefficient. This form of the partition 
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coefficient, being based on ~n~ntrations, is of 
particular interest; because of the dynamic na- 
ture of the partitioning process, it is Kc that can 
be related to the residence (“retention”) time, 
which is expressed as 

(t&J = 1 + k; ; k; = (tj - ~~)/~* 

where 

k: = &V,l&V, = K;(V,Iv,) = K;(n,ln,) (3) 

is the capacity factor, representing the extent to 
which a partitioning solute i is retarded with 
respect to the mobile phase itself, which remains 
in the separation system during the time to, to be 
measured with a non-partitio~ng solute. (In the 
follo~ng we omit the overbar for average con- 
centrations for simplicity.) From these elemen- 
tary relationships it is clear that the role of the 
mobile phase is as important as that of the 
stationary phase. As the latter can in practice 
only be infIuenced indirectly by varying the 
mobile phase or conditions such as temperature, 
the mobile phase parameters are the ones to 
change in order to find effective retention and 
separation. 

2. REGULAR SOLUTION THEORIES 

It is commonly accepted that solute-solvent 
interactions in the bulk mobile phase institute 
one of the main factors governing RPLC reten- 
tion behaviour, and useful but simplified theories 
(Schoenmakers and co-workers [2-61, Jandera et 
UZ. [7]) have been designed on the basis of this 
premise. These theories are well suited for the 
description of dist~bution processes in bulk 
liquids, where retention is assumed to depend on 
the free energy to create cavities for solvation of 
solute molecules in mobile and stationary 
phases. 

At the~odyn~ic equilib~um, the chemical 
potentials (or the activities) of the solute in the 
mobile and stationary phases are equal. From 
regular solution theory [35,36], in the limit of 
infmite dilution, it follows that the partition 
coefficient KI for molecule i in terms of mole 
fractions, xi, m the mobile (m) and stationary (s) 
phases, is given by 

In Kr = ln (.x~Jx~~) = xim - xi, 

(4) 
where xi is the Flory-Huggins interaction pa- 
rameter 36,371 for solute i in phase p (p = m, f 
s). xi, is the work (i.e., a standard free energy 
AF~JRT, consisting of entropic and enthalpic 
contributions) required to transfer solute i from 
pure i to a solution in pure phase p. In the limit 
of infinite dilution, xe is equal to In rip, ri, being 
the activity coefficient of i in p. In the case 
where enthalpic effects in simple liquid mixtures 
dominate, x values can be obtained from vapori- 
zation energy data or from generalized thermo- 
dynamic functions [2]. This requires the assump- 
tion that the binary interactions involved can be 
obtained as the geometric mean of the pure- 
substance interactions, the basis for the solubility 
parameter S [2,35]. In this and related “cavity” 
theories [2-7,13-151, which can be seen as 
extensions of the regular solution theory [35,36], 
partitioning is assumed to depend on the free 
energy to create cavities for solvation of solute 
molecules in the mobile and stationary phases. 
The Flory-Huggins parameter xi, is related to 
the solubility parameters of i and p in a binary 
mixture at infinite dilution: 

xi, = A~L,,IRT= (v,IRT)(S, -4,)" (5) 
where S represents the square root of the cohe- 
sive energy density, after ~ldebrand et al. 1351, 
and vi is the molar volume of solute i. For 
dealing with polar compounds, it is necessary to 
divide the total solubihty parameter into partial 
contributions, as discussed elsewhere [2-6,38- 
41]. We stress the fact that the “cavity” theories 
are reasonably successful in describing true parti- 
tioning phenomena, even in multi-component 
bulk phases with local ordering from, e.g., hy- 
drogen bonding [2-7,13-151. 

For instance, for a binary mobile phase (in 
RPLC use is often made of aqueous mixtures 
with an organic “modifier” such as alcohols, 
acetonitrile or tetrahydrofuran) these theories 
successfully predict the quadratic dependence of 
in Kc vs. rp,, ‘p, representing the volume fraction 
of modifier in water [3-5,411: 

In KC= A(rp,)2+Bqm+ C (6) 
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where C is the value of In Kf in pure water. The 
coefficients A, B and C can be expressed in 
Flory-Huggins x parameters [8-12,161, solubili- 
ty parameters [2-6,411 or interaction “indices” 
[7], very similar to the Flory-Huggins parameter 
x (eqn. 5). It appears that, owing to all the 
simplifications and assumptions made, eqn. 6 
indeed describes the observed experimental 
trend, but is not suited for a priori predictions of 
retention vs. composition. 

However, the application of cavity theories to 
RPLC is usually convenient because of the often 
observed correlation between liquid-liquid parti- 
tioning and retention in RPLC. Although not 
suitable for predictive purposes, partitioning 
data can be readily used to determine interaction 
parameters [2-121, e.g., with eqn. 6. In spite of 
its shortcomings, the relative success of the 
cavity theory, especially when formulated in 
readily accessible solubility parameters, justifies 
its treatment with selected applications in the 
next section. 

The solvophobic theory after Horvath and co- 
workers [13,14], although more elaborate and 
complex than the former “cavity” theories, still 
underestimates effects of cavity formation in the 
stationary phase [8-121. In fact, in this theory, it 
is only the mobile phase that “drives” solutes 
towards the stationary phase, and no account is 
taken of possible solute-stationary phase inter- 
actions. Solvophobic theories thus neglect the 
experimentally supported fact that retention 
actually depends on the nature of the chain 
phase. Consequently, the solvophobic theory is 
not suitable for predictive purposes either. 

The main conclusion is that the “cavity” 
theories do a good job in bulk phase partition- 
ing, but that they neglect the specific properties 
of grafted layers such as the configurational 
constraints of terminally attached chains. In a 
more satisfactory approach, entropy effects 
should be incorporated in the theory. Owing to 
the partial ordering of the grafted alkyl chains, 
entropic expulsion of solute molecules from the 
stationary phase is expected to take place. Al- 
though it is thus foreseen that a priori predic- 
tions of absolute data on partitioning especially 
in grafted systems are impossible using regular 
solution theory (RST), we shall show that on a 

relative basis, following Rohrschneider’s (origi- 
nally gas chromatographic) method [42,43] and 
using well defined calibrating solutes, a very 
useful practical characterization of the system 
can be obtained. In liquid-liquid partitioning we 
shall once more stress the surprising success of 
RST, especially if use is made of an extended 
solubility parameter model, to be discussed next. 

2.1. Potentials and shortcomings of an extended 
solubility parameter model 

To allow an efficacious choice of partitioning 
systems, a large number of approaches have 
been chosen over the years in the literature. The 
resulting models range from theoretical models 
based on molecular interactions and thermody- 
namics, to group solution models and semi-em- 
pirical models (such as the Hansch Pow system 
[44,45]). Purely empirical data are largely col- 
lected by the manual shake-flask method [44-471 
and to an increasing extent by instrumental 
techniques such as liquid chromatography and 
flow-injection analysis (FIA) [48]. 

In this section we review a model for partition- 
ing in chromatographic systems that is capable of 
predicting trends [such as pressure (p), tempera- 
ture (T) and compositional dependences], and 
which makes it possible to choose optimum 
separation conditions for specific separation 
problems. Based on the observation that many 
liquid-liquid partitioning data are readily corre- 
lated with RPLC retention data, it is also 
thought that the model should cover chromato- 
graphic methods that use as the stationary phase 
grafted layers, instead of a bulk liquid, as with 
both GC and RPLC. 

It is proposed to adapt the multi-dimensional 
solubility parameter approach as developed ear- 
lier by us [2-61 and others [38,39] to characterize 
partitioning behaviour in analytical separation 
techniques such as gas, liquid and more recently 
supercritical chromatography. In essence, the 
concept of solubility parameters provides a 
means for a quick estimate of the mutual 
solubility of two liquids, in the sense that 
solubility (= miscibility) will be better when the 
solubility parameters are closer to each other 
(“like dissolves like”). Although the concept is 
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very simple, it is yet widely employed and an 
exhaustive overview can be found in Barton’s 
handbook [48]. 

It is well known that the solubility parameter 
approach, being based on the cohesive energy 
density (CED), rather than on the free energy 
which is the ruling factor in partitioning (see next 
section), has its limitations, but prediction of the 
required trends is surprisingly successful. At the 
same time, in view of the broad variety of 
conditions in separation columns (e.g., gas 
pressures, varying mobile phase compositions, 
temperature gradients), it is of little use to try to 
make the predictive model as extended as pos- 
sible. It is more fruitful to give satisfactory 
reflections of trends in partitioning behaviour, 
with empirical data, where possible, helping to 
guide the choices. 

In the authors’ opinion, this goal could be 
reached with the extended solubility parameter 
(ESP) model, successful in many respects in 
chromatographic [2-6,38-41,49-511, and chemi- 
cal engineering sciences [48,52-541. Based on 
this experience, it is expected that the ESP 
model holds considerable promise as the basis of 
optimization systems for the selection of parti- 
tioning systems and the prediction of residence 
times of solutes. 

As, moreover, the numerical values of the 
CED can be found from reliable data which are 
based on available and modem equations of 
state, the use of the solubility parameter model 
is very convenient. It will be shown in the next 
section that this approach indeed leads to useful 
predictions of trends, but not always to correct 
prediction of K values themselves. In order to 
overcome this limitation, a semi-empirical 
model, also based on the solubility parameter 
concept, will be introduced, where experimental 
data for selected standard solutes in standard 
phase systems serve as calibration data for the 
characterization of partitioning of arbitrary sol- 
utes. 

2.2. Thermodynamic background of partitioning 

The main purpose of this section is to serve as 
a reference for the further discussion. It is by no 

means exhaustive, but considers the concepts 
necessary for obtaining a feel for the subject. 

In general, the thermodynamics of a system 
[35,36,55] are fully described by its fundamental 
equation. For a system with a fixed composition, 
this fundamental equation describes the internal 
energy U of the system in terms of entropy S, and 
volume V: U = U(S,V). From the combined first 
and second laws of thermodynamics it then 
follows that U is related to both temperature T 
and pressure p via dU = T dS -p dV, where T = 
(13Ul~3S)v and p = -(&Y/dV),. 

Thermodynamics postulate that the equilib- 
rium state (for given S and V) corresponds to a 
minimum of the internal energy U, and likewise 
for given U and V to a maximum entropy S. For 
the purpose of liquid-liquid equilibria, S and V 
are inconvenient variables and the equation for 
the (Gibbs) free energy is more useful, being 
expressed in the practical variables p and T: 
G=G(p,T)=U+pV-TS=H-TSwithdG= 
-S dT + V dp; H = U +pV represents the en- 
thalpy. Now, thermodynamic equilibrium at 
specified p and T is reached for a minimum in G, 

i.e., (dG),,, = 0. For chromatography, mixtures 
of compounds i are important, so that the 
number of molecules, ni, of the individual 
species are also variables: G = J nipi and dG = 
-S dT + V dp + J pi dni, where p is the chemi- 
cal potential (or partial molar free energy), 
defined as pi = (dGldni),,,,i [the subscript p, T, 
nj indicates that p, T and ni (i #j) are kept 
constant]. 

Thus the chemical potential of component i 
describes how the total free energy G of the 
system changes when one of these molecules i is 
added to the system, which is otherwise kept 
constant. An important consequence is that, for 
constant p and T, the chemical potential of the 
components i cannot be varied independently, 
i.e., they mutually influence each other: 
iC ni dpi = 0 (Gibbs-Duhem equation). The total 
free energy G is an extensive quantity whose 
value scales linearly with the size of the system, 
i.e., with such quantities as total number of 
molecules N = J nj, total volume V= J niui or 
total mass or weight W = iC nimi. Differentiation 
of G with respect to one of the quantities N, Vor 
W gives an intensive quantity that depends only 
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on the ~m~sition, i.e., on either the mole 
fractions xi = n,lN, the volume fractions ‘pi = 
np,IV or the mass fraction wi = n,m,lW. In the 
derivations below we shall often use the volume 
fraction cp. 

For the calculation of phase and partition 
equilibria [35,36,55,56], the general starting 
point is the thermodynamic equilibrium condi- 
tion, dG = 0, which in the case of equilibrium 
between two phases s and m reads: dG = (Elis - 
pi,,,) dn, = Ap dn, = 0. One may thus find the 
thermodynamic equilibrium state either by mini- 
mizing the free energy G or by equalizing the 
chemical potentials of each component in each 
phase. For perfect solutions (Raoult type) of 
solute i in some liquid solvent, the chemical 
potential can be represented by a common two- 
factor expression: pi = py f RT In xi, where R is 
the gas constant and & is the chemical potential 
valid for a standard state with i in unit concen- 
tration [i.e., pure solute i (xi = l)]. The value of 
pp depends strongly on the molecular interac- 
tions and so depends on the phase in which i is 
present. The value is generally lowest for strong 
intermolecular interactions, i.e., high affinity 
between solute and solvent. The second term, 
RT In xi, arises because of the extent of dilution, 
and is of entropic origin. 

If the expression for pj is substituted into the 
equilib~um condition A@ = 0, the equilibrium 
ratio, i.e., the partition coefficient, is obtained 
generally as represented in eqn. 1. Alternatively, 
we may write 

KF = (x~~/x~J = exp[(yy,,, - &)/RT] 

= exp[ApplRT] (7) 

If the deviation from perfect Raoult behaviour is 
described by the activity a, = xxi, where x is the 
activity coefficient, we have pi = py + RT in xxi. 
When activity coefficients depart from unity, the 
equilib~um ratio should be expressed in terms of 
activities and then, in equilibrium, the activities 
of the solute in both phases are equal, a, = a,, 
hence yisxis = yimxim and so (with 6~; = 0 for 
pure i as the standard state): 

Kf = (xistx,,) = (x,/n,) exp[A~~/RT] 

= (YimlXs> (8) 

It should be realised that the chemical poten- 
tial is a function of both temperature T and 
pressure p, as a result of which y = y(p, T) and 
likewise K = K(p,T), Each activity coefficient is 
a measure of the chemical potential CL, which 
consists of an enthalpic and an entropic part. 
Expressed as excess functions [i.e., actual minus 
perfect (Raoult-type), e.g., pe = g - pPerf = IA - p” 
RT In x], we have 

pe=he-Tse=RTlny (9) 

where h is the partial molar enthalpy and s the 
partial molar entropy. 

As mentioned above, p = p(p,T) and the 
more implant temperature dependence can be 
obtained from eqn. 9. This expression also 
describes how the activity coefficient depends on 
the partial molar excess enthalpy and entropy of 
mixing. Provided that these quantities are in- 
dependent of temperature, which is commonly 
the case especially for the entropic contribution, 
a plot of In y vs. l/T, and for that matter of In K 
vs. l/T, often yields in practice a straight line 
from which both quantities can easily be ob- 
tained (h” and Ah” from the slope, se and As” 
from the vertical axis intercept). 

This behaviour makes it possible to interpret 
eqn. 9 such that the activity coefficient consists 
of two parts, one connected to the enthalpic 
function (the thermal, residual or regular activity 
coefficient, y 3, the other to the entropic func- 
tion (the athermal or combinatorial activity co- 
efficient, y ‘): 

lny=lnyh+lny” or y=yhyS (10) 

Now, as in Hildebrand’s RST [35], it is assumed 
that enthalpic and entropic cont~butions are 
independent of each other. This permits the 
construction of the total activity coefficient from 
two independent models, one describing the 
entropic and the other the enthalpic part. The 
enthalpic part In yh is also known as the en- 
thalpic part of the Flory-Huggins interaction (x) 
parameter (see below). 

Formally, pe and thus y and K are also 
functions of pressure, but the resulting pressure 
dependence, which for K can be written as 

RT[(a/ap)(ln Kl(p, T)]. = (urn - uf) (11) 
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rarely exceeds cu. 10 ml/m01 in LC, i.e., only 
pressures in excess of say 500-1000 bar would 
yield appreciable pressure influences. It is con- 
cluded that for all practical purposes the expres- 
sion for K” remains eqns. 4 and 8, provided that 
true (incompressible) liquid-liquid equilibrium is 
considered. The situation changes, however, as 
soon as compressibility must be considered, as in 
GC and SFC [57]. 

2.3. Introduction to lattices: Flory-Huggins 

For simple, monomeric, liquids the entropic 
mixing contribution can be approximated by the 
well known athermal mixing entropy expression 
after Flory and Huggins [37]. Assuming that the 
liquid molecules can be represented by points in 
a lattice, where the N available lattice sites are 
occupied by both solute i and phase p, N = ni + 
n P, the total number of arrangements of the 
particles is given by fi = N!I(N - n,)!nj! such 
that after using the Stirling approxrmation for 
factorials and the Boltzmann relationship for the 
configurational entropy (k m a), the entropy of 
mixing (Asm” = SC”” - ,“*mlx) becomes 

Asmix = Sconf 
= -k(n, In xi + nP In iP) (12) 

where x = n/N and Sunmix = 0 because there is 
only one way to fill the lattice with indistinguish- 
able molecules of pure species in available sites. 

It is often convenient to express the effect of 
mixing in mixing functions per unit volume and 
in terms of volume fractions of the components. 
To this end we attribute a volume V, to each 
lattice site such that the total lattice volume 
equals V= V, J ni = V,(n, + nP) and mole frac- 
tions x are replaced with volume fractions cp, i.e., 
the fractions of the total number of lattice sites 
occupied by i and p segments, respectively. For i 
being a monomeric molecule occupying only one 
site and p being a linear polymer chain molecule 
of r segments each of the same volume of the i 
sites, r also equals the ratio of molar volumes, 
r = VP/vi = qpxi/~&. Hence, after placing ni + nP 
molecules on the available N sites the volume 
fractions are ~~ = n,l(n, + m,) and q = mnpl(ni + 
rnP) respectively. 

Now the enumeration of the number of dis- 

tinguishable ways fl of placing the differently 
sized molecules in the lattice is not as simple as 
for small, equally sized molecules, because in 
oligomers and polymers the positions of consecu- 
tive segments are highly correlated as a result of 
their connectivity. However, as has demonstra- 
ted first by Staverman in 1941 [58] and later by 
Flory and Huggins, the result is surprisingly 
simple, provided that some approximations are 
allowed. 

Following Flory [37], we start filling a lattice 
with coordination number Z (the number of 
bonds per site) with polymer chains, the sites 
being connected in a random way. Each new 
molecule can be placed in a smaller number of 
ways than its predecessor and we start when j 
polymers have been added. Then there are N - 
jr positions available to the first segment of the 
( j + 1)st molecule. Its second segment, being 
connected to the first, has at most Z sites 
available, from which on the average only a 
fraction (N - jr)lN will be unoccupied. Similar- 
ly, for the third and higher segments on the 
average (Z - l)(N -jr-)/N sites are available. 
After placing all yP polymer molecules, the 
remaining N - nPr sites are thought to be filled 
with solute i molecules, each occupying one site 
and the important approximation of a uniform 
segment density has been introduced. This ap- 
proximation does not happen for dilute polymer 
solutions, where polymer coils are present as 
isolated coils, i.e., segment densities of other 
polymers will be smaller in the neighbourhood of 
polymer j + 1 than assumed above. Although the 
local segment density of other polymers has been 
overestimated, that of the same polymer (j + 1) 
has been underestimated, as these segments are 
not smeared out over the whole volume, but are 
concentrated around the centre of gravity of the 
molecule. This counteracts the overestimation of 
segment densities of the other polymers to some, 
yet unknown, extent. 

Thus, accepting this uncertainty, the number 
of configurations available for the (j + 1)st mole- 
cule is on average: oj+i = (N - jr)Z(Z - l)r-2* 
[(N - jr) lN]‘-‘. This expression is only quantita- 
tive for large Z values [37], but accepting that, 
we proceed to find the total number of ways to 
fill the lattice, R, from the product a= (l/ 
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n,!),IIo,+, (i ranging from 0 to n,). Once this 
has been evaluated, the combinatorial entropy 
change is found from the Boltzmann relationship 
and we give the result for the entropy of mixing 
ASmiX = Sconf _ Sunmix (with Sunmix = Sconf for 

pure polymer, i.e., for IZ~ = 0) without further 
computational details: AS”‘” = -k(n, In xi + 
nP In ran) = -k(n, In rp, + nP In cp,), or 

ASm’” = 
-k((p, ln vi + q ln cp,)N (13) 

This is the well known (Staverman) Flory-Hug- 
gins entropy-of-mixing expression. Note the 
close resemblance with the small molecule result 
(eqn. 12) despite the polymeric intricacies. 
Differentiation of the excess function with re- 
spect to ni to find the partial molar excess 
entropy of mixing sevmix of solute i in the phase p 
and from that the entropic part of the activity 
coefficient yields In ri = -Pmix/k = In [(l- 
vb)lxJ + [l - (llr)]q, i.e., for the common 
chromatographic condition of infinite dilution 
(xi+O, ~~9 l), In yy = In (l/r) + [l - (l/r)], or, 
expressed in the more practical terms of molar 
volumes, 

In ri = In (Vi/U,) + [l - (“i’up>l (14) 

It has been argued by Hildebrand [59] that the 
Flory-Huggins (FH) lattice model overestimates 
the excess entropy, and modifications have been 
proposed [58,60-631. The Prausnitz approach 
[61-631 and the subsequent UNIFACKJNI- 
QUAC model [64-671 for this combinatorial 
contribution certainly lead to better results, 
using Van der Waals-related volumes rather than 
molar volumes. However, the required addition- 
al information on external molecular surfaces 
can be obtained only through a complicated 
procedure involving bond lengths and angles, 
and in complex multi-component fluids this in- 
formation is not very easy to obtain. The same 
applies to the empirical correction of eqn. 14 
[54]: the terms in (vi/u,) are provided with an 
exponent to be fitted as an adjustable parameter 
to experimental data. 

As a result, we prefer eqn. 14 in practice, 
except for aqueous solutions where the associa- 
tive structure of water clearly contributes to both 
enthalpic and entropic processes (see, e.g., 

Moroi et al. [68]). For aqueous solutions we have 
no other alternative than the use of estimation 
methods [56] or the experimental determination 
of activities, e.g., by GLC or FIA [48,69]. 

2.4. The residual activity: molecular interactions 

The other part of the activity coefficient, the 
enthalpic (or residual) part, has its origin in the 
relatively large intermolecular interactions, 
which are responsible for the cohesion of liquids. 
In a mixture of i and p there are three types of 
contacts: i-i, p-p and i-p, with interaction 
energies uii, upp and uip, respectively. If we again 
assume that in a random mixture each particle is 
surrounded by 2 nearest neighbours (which are 
the only ones with which interaction can take 
place), each molecule is surrounded, on average, 
by Zx, particles of type i. Hence by simply 
counting the number of (like) contacts that have 
to be broken in the pure components to form the 
number of (unlike) contacts in the mixture, the 
enthalpy (heat) of mixing 

AHF = Hi, - (Hi + HP) 

= iVZXiX,{[(Uii + Upp)/2] - uip} 

= NZxixp Au= 

where AueX the exchange energy. Interaction 
energies of the type related to London-Van der 
Waals dispersion forces can be calculated from 
the pure component values by the geometric 
mean rule uip = (u~~u~J”~ because of the prop- 
erties of electrostatic interactions and polariza- 
bility. If this were true for all interaction ener- 
gies, we could write for the exchange energy 

Au= = +(uii + up,) - uip = +(uf’” - u;,“)” 

The Gibbs free energy of mixing now becomes: 

AGmix = Mmix _ T Asmix = mmix _ TSconf 

= NZxixp AueX + kT(n, In xi + nP In x,) . 

In terms of volume fractions with total volume 
V = (n, + n,)V,, this can be rewritten as 

AG”‘“/V= kT[(Z Aue”/VLkT)cpiqP 

+ (Qi In ‘Pi + Qp In QJ/VLI . 
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The first term is usually simplified by intro- 
ducing the Van Laar interaction parameter, xi, = 
2 Au”“lkT, which is nothing but the predecessor 
of the (identical) Flory-Huggins (FH) parame- 
ter. 

In this case p is taken to be a polymer of r 
segments so that, as before, when we place j 
polymers in the lattice, the volume fraction 
equals up = jr/N. Proceeding along the same 
lines as for monomer segments, now taking 
polymer segments as the basic elements, we 
arrive at a similar expression for the heat of 
mixing, now expressed in volume fractions: 
AH m’x = NZ’pis AueX. This is not exactly correct 
because one should count the number of interac- 
tions rather than the number of segments (cfi, 
Flory [37] or Koningsveld and Kleintjens [70]), 
but for either 2 or r+ CO the limiting result is still 
given by the above expression. It was again 
Staverman in 1937 [58] who gave a more im- 
portant correction to the present expression by 
arguing that energetic interactions are propor- 
tional to the surface area per segment (rather 
than the volume) and that chemically different 
segments may have different interaction sur- 
faces. A significant improvement might be ob- 
tained by this approach, using, e.g., Bondi’s [71] 
group contribution scheme for these interaction 
surfaces, but we refrain from that because of the 
loss of simplicity. Similarly, we do not take into 
account the corrections that arise from non-ran- 
dom (rather than the assumed random) mixing. 
The latter arises naturally in cases where the 
exchange energy is negative, i.e., when ip inter- 
actions are energetically more favourable than ii 
and pp interactions; as a result, the total energy 
of the system is further lowered by allowing local 
ordering such that an i-segment will be sur- 
rounded by p-segments in a higher fraction than 
based on the random mole fraction of p-seg- 
ments, at the expense of some decrease in 
entropy [72]. 

Thus, proceeding with the common FH ap- 
proach, the free energy of mixing for polymeric 
phase equilibria is 
AG mix = AHmiX _ T ASmix 

= NZ’piq AueX + kT(n, In cpi + np In cp,) 

or, alternatively, and commonly found in. the 

literature, 

AGmix/NkT = xcpirp, + (Qilr,) h Qi + (Qplrp) h Qp 

(15) 

where the monomeric compound i has been 
extended to a polymer with ri segments such that 
N = n,r, + nPrP and cp = nirilN; rP replaces the 
earlier r. From this, for completeness, we find 
the chemical potentials by taking the appropriate 
derivative of AGmi” with respect to ni or nP. For 
the solute molecule i we find 

Api = pi - p: = (aApJan,) 

= NkT{in ~~ + [l - (rilr,)]4p, + r,x,cpi} (16) 

where xi, is now the Flory-Huggins interaction 
parameter: xc = Z Au”“lkT. 

If the geometric mean rule applies for the 
exchange energy, we have 

x,kTIV, = Z Au”“lV, 

= [(zuii/2vL)“2 - (zu,,/2vL)“2]z 

The quantities within the square roots represent 
the amount of binding energy that is stored in 
one lattice cell volume of the pure component, 
i.e., the same as the energy required to “evapo- 
rate” one unit volume of material. This “cohe- 
sive energy den&y” is the basis for the “SoIubility 
parameter”, S, being the square root function, 
e.g., for solute i, Si = (ZuJ2VJ”* and so 

xi, = (V,IkT)(S, - S,)” = (u,IRT)(S, - 6,)’ 

Interaction parameters or alternatively solubility 
parameters play an important role in the thermo- 
dynamics of mixtures, as can be expected from 
the above discussion. For example, the enthalpic 
part of the activity coefficient, required for the 
determination of partition coefficients, can be 
expressed in terms of these- parameters: In 7: = 
xi, = (uiIRT)(Si - 8,)’ (see below). 

3. EXTENDED SOLUBILITY PARAMETER CONCEPT 

FOR THE RESIDUAL ACTIVITY 

The UNIFAC approach also offers a solution 
of groups concept (ASOG) for the estimation of 
the residual part of the activity coefficient, which 
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has recently been shown to be fairly successful 
(an accuracy of 6% has been reported [73], 
probably slightly optimistic in view of the 21% 
reported for a large data set [54]). Price and 
Dent [74] obtained predicted partition coeffi- 
cients with this method for GLC which differ 
from experimental data by 20-50% for non- 
polar and >50% for polar stationary phases. 
Also, as stated earlier, the procedure to obtain 
the group interaction parameters is not very 
attractive for the present purposes. Moreover, 
Thomas and Eckert [54] and more recently Park 
and Carr [51] have shown that the modified 
separation of cohesive energy density 
(MOSCED) model, based on extensions of the 
RST, is at least as successful as the UNIFAC 
approach (accuracies of 9% for the same large 
data set and 18% for a limited set). 

The equations used in the MOSCED model 
are based on the extensions to the RST put 
forward by Karger and co-workers [38,39] and 
Schoenmakers and co-workers [2,3,5,6] in their 
ESP models. These were designed in order to 
permit a description of the behaviour of polar 
and associating compounds in addition to non- 
polar and slightly dipolar solutions for which the 
RST had been designed originally. The only 
basic difference between MOSCED and ESP is 
that the former computes interaction parameters 
as adjustable, minimizing residuals between ex- 
perimental and calculated y’s, whereas the ESP 
models use pure-component parameters as initial 
input data. Although it might be true that the 
correlational procedure for parameter estimation 
in MOSCED leads to better predictions, owing 
to a lack of experimental data in many practical 
RPLC conditions this cannot be considered as a 
practical proposition. 

3.1. Solubility parameters 

Being essentially the same basic model, the 
ESP model is advocated here as a promising 
starting point for the prediction of partitioning 
behaviour in RPLC (and also in other cases). 
The model is based on the Scatchard-Hilde- 
brand mixing rule [35]: 

where ~7; is the mixing energy associated with 
substances 1 and 2, present in the respective 
mole fractions X, with the volume fractions cp and 
the (cohesive) interaction energy densities c = - 
(u/u). Eqn. 17 is an alternative expression for 
the energetic part derived above on the assump- 
tion that ue = se = 0 (i.e., a regular solution). The 
basis of this regular mixing rule has been consoli- 
dated by later derivations via integration of all 
intermolecular interactions between pairs of 
molecules throughout the bulk of the solution 
[36]. If now the rule of the geometric mean 
cohesive energy densities, cl2 = (~i~c~~)i’~ = S,S, 
is introduced, where 6 = c~‘~, the solubility pa- 
rameter, then eqn. 17 simplifies to 

The geometric mean rule for the cohesive 
energy density is basically correct only for inter- 
action energies that are randomly distributed, 
symmetric and distance-only functions, such as 
dispersion interaction (London-Van der Waals) 
and dipolar interactions (Keesom). It is known, 
however, that for polar interactions (induction, 
association) the geometric mean assumption fails 
[35,36,75]. To correct for this deviation from the 
geometric mean rule in the MOSCED model 
asymmetry parameters were introduced as ad- 
justable parameters for improving the predictive 
accuracy of the model. Other empirical correc- 
tion parameters can be found in the work by 
Prausnitz and co-workers [35,36] in the form 

Cl2 = (1 - 42klc22)1’2 such that eqn. (18) is 
modified to 

Au? = (x1u1 + x,u,)[@, - 62j2 + 242~,~2l%cp, 

For simplicity, we choose to make no use of 
these empirical Z,, parameters. As a result, we 
find the thermal part of the activity coefficient 
(eqns. 9 and 10) from the partial molar excess 
enthalpy h” = ue +pu”, which for regular solu- 
tions equals ue because by definition ue = 0. 
Consequently, with eqn. 18 for the mixing 
energy, he = ue = a(AuF)/&+ = RT In yh, so at 
infinite dilution 

In ~4 = xip = (u,IRT)(G, - ~3,)’ (19) 

Because of the exponential nature of this rela- 
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tionship, highly accurate values for the solubility 
parameters in eqn. 19 are needed (insofar as the 
approximate nature of eqn. 19 itself is disre- 
garded). Values for the solubility parameter are 
usually determined from its definition as the 
square root of the cohesive energy density 
(CED), c. For saturated liquids the internal 
potential energy equals the sum of the molar 
energy (heat) of vaporization, (not to be con- 
fused with the latent heat of vaporization), Au’, 
and the energy needed to expand the saturated 
vapour to the ideal gas state (zero pressure or 
alternatively infinite volume): 

m 

-u=Au”+ 
I 

(au/au), du (20) 

or in terms of the common latent heat (enthalpy) 
of vaporization: 

--u = Ah’ - pugas + Ah,,, + pqi, 

= Ah’ - RT + Ah,,, + puli, (21) 

Provided that pressure and temperature are far 
removed from critical conditions, Ah,,, and pqi, 
can be ignored in comparison with the other two 
terms and one arrives at the commonly used 
expression for the solubility parameter: 

S2 = (Ah” - RT)Iu,,, (22) 

from which S values are often estimated, if 
sufficiently accurate vapour pressure data are 
available or otherwise by applying Clausius- 
Clapeyron or Antoine equations with known 
coefficients. For GLC purposes (low pressures) 
this is often a good procedure, optionally cor- 
rected for gas imperfection by the compressibili- 
ty factor Z =puIRT: 

6’ = (Ah” - RT)ZIu,,, (23) 

The well known tables after Hoy [53] are based 
on this procedure. For the present purposes, 
especially at high pressure and temperature 
conditions, this procedure may lead to appreci- 
able errors because of the omission of the 
additional terms in eqn. 21. 

3.2. The role of the internal pressure 

Internal pressure is defined as the pressure 
associated with the internal energy. A first ap- 
proximate correction can be based on the use of 
the Van der Waals equation to find the ignored 
expansion terms in eqn. 21. This yields an 
identity of the internal pressure SP and the CED 
[for the liquid phase 9 = c = a/(~,,)~ and for the 
gas phase B = a/(~,,~)~]. Hence eqn. 20 becomes 
-u = Au’ + a/ugas = Au’[l + (uliq/ugas)l, which 
leads to the correction term 1 - (uliq/ugas)’ for 
the right-hand side of eqn. 23. The validity of 
this correction term, being based on the uncer- 
tain Van der Waals equation, is doubtful especial- 
ly in view of our goal to obtain quantitative 
results. 

It has been argued by Bagley and co-workers 
[76-791 and Dack [80,81] that in the regular 
mixing rule (eqn. 17) the differential quantity 
9 = (au/ a~)~, the internal pressure, rather than 
the integral quantity c = -u/u, the CED, should 
be used. This has been largely neglected as, 
especially for non-polar substances, the internal 
pressure and the CED are not very different 
(although systematic differences of up to about 
22% have been measured by Allen and co-work- 
ers [82,83]). Also, as stated above, the Van der 
Waals equation yields an identity of .5Y and c. For 
polar substances, however, the CED is always 
larger than the internal pressure as the CED 
accounts for all contributions to the internal 
energy and the internal pressure only for those 
which are volume dependent. As we recall that 
the mixing rule has been strictly derived for 
symmetrical potential energy contributions, 
there is much sense in Bagley and co-workers’ 
proposition of using 8 instead of c in the mixing 
rule. Indeed, it is B that covers the strongly 
distance-dependent classical dispersion interac- 
tion and the dipolar (orientation) interaction, so 

9 = -(ud + UJIU (24) 

The CED, on the other hand covers the whole 
of Au”, and all of the energy changes involved in 
the phase change from the liquid into the gas, 
and thus contains even kinetic energy terms 
associated with changes in translation, vibration 
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and rotation between liquid and gas states, in 
addition to the dispersion interaction. Thus, for 
non-polar (np) substances: 

Au’,, = -(u,, + u,,) + Auki” = SI”u + Auki” (25) 

Depending on the change in the number of 
degrees of freedom, Af, this results in a kinetic 
term in eqn. 25 of Aukin = Af(RT/2), with the 
ideal value of -(3/2)RT based on Af=O+3 - 
6 = -3. With eqn. 25 it then appears that for 
non-polar compounds the CED c is slightly but 
systematically smaller than the internal pressure, 
in accordance with a large number of observa- 
tions [82,83]: 

C “p = (Au’,,)lu = air, = 9 - (3/2)(RTlu) (26) 

Bagley and co-workers [76-791 determined 
from experimental B and c data a large number 
of Af values and often obtained absolute values 
larger than 3, up to about 6, possibly because not 
strictly non-polar compounds such as alkenes, 
aromatics and chloroalkanes were used. Here we 
adopt eqn. 26 as the general but idealized 
relationship between CED and internal pressure 
for non-polar compounds. As it is B rather than 
the CED that appears in the mixing rule, the 
quantity called 6 in eqn. 19 should be based on 
internal pressure (S t = P) rather than on vapori- 
zation data (S ’ = c), and is larger than the 6 
values that appear in most tables: 

(S ;),, = B = c,_, + (3RT/2u) 

= LSiP + (3RT/2u) (27) 

Numerical values of the correction term (3RTl 
2~) are always small in comparison with the 
vaporization energy term, say 8-lo%, but vary 
widely for different compounds. The occurrence 
of the only small difference of two S values is 
another reason why Bagley and co-workers’ 
treatment has been overlooked for so long. As 
we are in need of very accurate numerical values 
we shall use the correct and slightly higher 6 
values. In the general case of polar compounds, 
the CED is always larger than the internal 
pressure. This is caused by the fact that P, 
reflecting the classical symmetrical interactions, 
is still given by eqn. 24, but the now possible 

asymmetric proton/electron transfer (acid-base) 
interactions with energy u,~ is taken into account 
by the CED parameter 6* as determined from 
vaporization data. Analogously to eqns. 25 and 
26, we have 

Au’ = -(ud + u, + u,~) - (3RT/2) 

= 9u - u,~ - (3RT/2) 

and so 

s2=s;+&-(3RT/2u) (28) 

where 6 h = -Q/U, the acid-base (often hydro- 
gen bond) contribution. Rearranging eqn. 28 
yields the total solubility parameter: 

S;=S2+(3RT/2u)=S;+S2, (29) 

where, as in the case of non-polar compounds, 
the square of the total solubility parameter, S, as 
defined by eqn. 29, is larger than the CED by 
the amount 3RT/2u, by analogy with eqn. 27. 
Again, the total solubility parameter to be used 
is slightly higher than those which appear in the 
literature. 

3.3. The multi-component ESP model 

In a natural way we arrived at a two-parame- 
ter model as expressed by eqn. 29. This shows 
some resemblance with the model developed by 
Hildebrand et al. [35], which applies the quali- 
tative and complex homomorph concept. Eqn. 
29 separates the solubility parameter into two 
parts, one covering the symmetrical interactions 
(8,) the other the chemical acid-base interactions 
&) in a unified and elegant way, and is to be 
preferred, whenever possible. 

In general, it cannot be expected that a two- 
parameter model will be conclusive in describing 
the effects of the many possible types of inter- 
action: dispersion, permanent dipole orientation, 
induction of dipoles, multipoles and transfer 
(chemical) interactions. Indeed, an additional 
empirical parameter was adopted by Hildebrand 
ef al. [35] to account for the additional but 
unknown contributions. Dispersion, orientation 
and chemical interactions have been included in 
the above already and it is believed that these 
are the main factors to be taken into account. 
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Although possibilities exist to account for in- 
duced dipoles [38] and “hard” and “soft” trans- 
fer interactions [84-871, this is not recommended 
because an estimation of errors reveals that each 
additional parameter increases the uncertainty in 
the resulting activity coefficient drastically. For 
this reason we propose that the extended 
solubility parameter model be used only with the 
mentioned three types of interaction, for which 
accurate methods can be developed to estimate 
numerical values. 

As in eqn. 29 6: = B = -&Iv) - (u,Iu), this 
can be interpreted as the sum of the squares of 
two individual partial solubility parameters, one 
for each type of interaction. Eqn. 29 then reveals 
its structure as a three-parameter model: 

s;=s;+s~+s:, (30) 

In this form, Hansen and co-workers [52] were 
the first to define a three-parameter ESP model 
to account for acid-base interactions. The only 
difference from the present treatment is the 
difference in numerical values for S i and 6 k, 
which in our case contain the kinetic energy 
contributions. If now Hansen and co-workers’ 
suggestion is followed and individual interaction 
energy contributions cj = 6: (j = d, o, H) are 
treated independently in the derivations follow- 
ing the regular mixing rule, eqn. 17, and additive 
after eqn. 30, we find 

Au,:;; = (x1u1 + x2”2)(cj,ll + ‘j,22 - 2cj,12hf3P2 

and with 

At first sight this new mixing rule is an 
improvement over the classical Hildebrand rule, 
eqn. 17. For instance, two substances with equal 
CEDs do not yield a mixing-energy effect ac- 
cording to Hildebrand, but they may do so 
according to Hansen if, by way of example, they 
have different dipole moments as well as differ- 
ent dispersion interactions. However, the acid- 
base term in eqn. 31 is open to criticism, because 
this quadratic term is always positive, which 
means an endothermic mixing energy. However, 
is well known that transfer reactions are often 
exothermic, which corresponds to a negative 
mixing-energy contribution that is impossible 
from eqn. 31. This situation is to be logically 
remedied by defining separate partial parameters 
for the asymmetrical acceptor and donor func- 
tions in transfer interactions as has been initially 
proposed by Small [88] and later by Drago and 
co-workers [84-871. Karger et aZ. [38] performed 
the important task of reformulating the mixing 
rule for this kind of asymmetric transfer inter- 
action. Defining the separate acid and base 
parameters, 6, and 6,,, such that for the pure 
substance 

62, = 24?,s, = -u,Ju 

and replacing eqn. 30 with 

(32) 

s;=s;+sH+2S,6, (33) 

we have eqn. 31. 

reveals the now four-parameter structure of the 
ESP model. Eqn. 31, which was only valid for 
the two classical interactions (j = d, o) is thus 
extended to the transfer interaction from eqn. 

32: cab,ll = s:,l; %b,22 = ‘it,,; ‘ab,12 = sa,l%,2 + 

S,,,t&l. As a result, the revised and total mixing 
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rule including the asymmetrical interactions is 
eqn. 34. 
This expression, which replaces eqn; 31, indeed 
shows the possibility of producing an exothermic 
energy effect from the acid-base interactions. In 
the limiting case of infinite dilution for i, eqn. 35 
applies. 

The activity coefficient that corresponds with 
this interaction for substance i in phase p is now 
found from 

he,- = ueTrn = ~(Au?$~“)/&+ = RT ln r:,” 

and so 

In y t& = (2ui’RT)(Sa,i - sa,p)(43,i - 47,~) (36) 

which extends eqn. 19 that applied only for the 
classical interactions. 

The total equation for the activity coefficient 
at infinite dilution as found from our four-param- 
eter ESP model, including the entropic contribu- 
tion of eqn. 14, now appears as eqn. 37. 
From eqn. 37 the partition coefficient based on 
mole fractions, K” according to eqn. 8, is shown 
as eqn. 38. 
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From eqn. 38, together with eqn. 1, the partition 
coefficient based on concentrations, and with 
eqn. 3 the capacity factor can be 
obtained as In KF = In KF + In (u,Iu,) and In ki 
= In KY + In @2,/n,), respectively. 

3.4. Chromatographic selectivity 

Another useful expression is that for the 
relative net residence times of two partitioning 
solutes, i.e., the ratio CQ = kj lki (such that LY > 
1): eqn. 39. 
For ui = ui = u, which is often the case for com- 
mon small molecules, eqn. 39 takes an interest- 
ing and very tractable form: 

h E;p” = AhrLFiy = AU$~i~ = ~u,(S,,, - S,,,)(&,, - h.2) (35) 

In ~7 = (uiIRT)[(ad,i - ad,,)* + (a,,i - ~,,,)’ + 2(‘a,i -a,,,)(&,i - %,,>I + In (vi/Up) + [I- (v,l~p>l 

= (UiIRT)[(S~,i + St,,> - 2(~~,i’~,p + ‘o,Po,p + sa,i%,p + %,i~,,,)l + In (vi/v,) + P - (“i’up)l (37) 

In K? = -(UiIRT){(a;,s -St,,) - 2[&,i(& - h,,) + %,A& - 4,,,> + 4,,i(%,s - %,m) + sb,i(%,s - %,m)l} 
+ In (us/u,) + ui[(u,)-’ - (urn)-‘] (38) 

In ‘Y~,~ = -(lIRT){(uj - ui)(S~,, - si,~) - 2[(ujscl,j - ‘i’d i)Csci s - ‘d,nJ 3 3 

+ C”jso,j - uiso,i>(so,s - 60,J + C”jsa,j - uisa,i)(sb,s - ‘IJ,III) + C”jsb,j - uisb,i)(sa,S - sE3,Jl~ 

+ (‘j - ui>[(“s)-l - (“nJ-ll (39) 
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or, more concisely, 

(Z?TI;?V) In (Y;,~ = (xi - $)y (40) 

where 2 and jj are the vectors in a fourdimen- 
sional space with coordinates: 

The importance of this formulation becomes 
especially clear from partial differentiation of 
eqn. 40: 

(RT12u)(1/~;,i)[a((Y;,Jlay”] =xnsj -+ (41) 

which shows that the relative change in a arising 
from a change in the nth coordinate (x,) is 
directly proportional to that difference in this nth 
parameter for both solutes. This is of great 
importance for our insight into ways of control- 
ling (relative) residence times and hence control- 
ling and maximi~ng selective separation in chro- 
matographic techniques. Alternatively, it gives 
us a tool to characterize phase systems on a 
relative basis with respect to a standard phase 
system with the aid of chosen calibration com- 
pounds. This is analogous to the commonly used 
retention index system in GLC (e.g., ref. 39). 
Such a standardized phase system might well be 
the octanol-water (OW) system [44,45], already 
mentioned and often used to correlate partition 
data with chromatographic studies. 

Indeed, the solubility parameter model out- 
lined above suggests that the partitioning in- 
formation stored in the Pow values and listed by 
Hansch and co-workers [44,45] can be recalcu- 
lated into those for any other phase system, 
especially those which also contain water as one 
of the phases. This can be seen from the expres- 
sion for Kc, following from eqn. 38 when applied 
to two two-phase systems, the variable phase 
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f$)-W and the (octanol) (0)-W system: eqn. 

This shows that the partition coefficient for the 
solute in the new phase system p-W can be 
recalculated to O-W even without knowing the 
partial solubility parameters of water. 

3.5. Estimation of the individual parameters 

The usefulness of the above depends first on 
the extent to which the underlying assumptions 
can be justified. Second, as has been mentioned 
before, owing to the exponential relationship 
between partition quantities and the partial pa- 
rameters, the usefulness of the ESP model de- 
pends heavily on the accuracy and precision with 
which the individual parameters can be obtained. 
By way of example, in the case of the dispersion 
parameter S,, eqn. 37 for the activity coefficient 
yields after partial differentiation that an error 
(AS,) gives the following error in the activity 
coefficient: 

Comparable error expressions exist for the other 
partial parameters and it appears that errors of 
about 1% in S values may already result in errors 
of ea. 3-10% in the activity coefficient. Each 
parameter in addition to the four we have finally 
chosen contributes to the overall error, and the 
contribution of parameters such as the asymmet- 
ric induction as described by Karger and co- 
workers [38,39] in particular to the error is larger 
than the improvement in the accuracy of the 
predictions. 

Although of basic interest and sometimes 
referred to as of relative importance, we cannot 
obtain sufficiently reliable estimates via the avail- 

In K& = In K&w - In K& = In Po, - In K& 

= (ui/RT){(~;# - ‘$,o) - 2]scl,i(‘il,p - 6d,o) + s0,i(60,, - ‘0,o) + sa,i(6b,p - %,O) 

+ $,i@a,p - &m - aql - eb)-ll (42) 
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able methods to account for the induction effect 
as well. This is not a large drawback as it appears 
that the expressions for partitioning including 
induction forces contain cross-terms (&,i - 
&nd,p)(&,i - &,J, which are always small. The 
corrections obtained for these terms are often 
smaller than the error introduced by the estima- 
tion of the induction parameters, so that we do 
not recommend the addition of a separate induc- 
tion parameter. 

We shall not describe here in detail the de- 
termination of the four main parameters, as this 
procedure has been outlined before [2] and has 
remained basically unchanged since then. We 
maintain the view that the procedure based on 
generalized thermodynamic properties is by far 
the best way to proceed, provided that reliable 
equations of state can be found. We still prefer 
the use of the three-parameter Lee and Kesler 
[89] equation because it provides very reliable 
heats of evaporation [56]. This also has the 
advantage that both temperature and pressure 
dependences of the solubility parameters are 
found, which is especially useful in GC and SFC 
[57]. For example, in accordance with the 
linearity of the relationship In K vs. l/T, the 
square of the total solubility parameter shows a 
strictly linear temperature dependence: S c = 
AT + B. We note interesting developments in 
estimating multi-dimensional solubility parame- 
ters by molecular mechanics and dynamics (MD) 
methods, which were recently applied [90] to 
such complex molecules as alkyl phenol ethoxy- 
lates for which no EOS is available. 

For many small molecules the EOS approach 
is fairly straightforward, but of course in the case 
of polymer chain molecules it is not a practical 
proposition. In that case there is hardly any 
possibility other than to determine partial 
solubility parameters either from group contribu- 
tion schemes according to Small, Hoy, Fedors 
and others (see Barton [48] for a review) or from 
experimental data using, e.g., chromatographic 
techniques themselves as the characterization 
method, using known solutes (see later). Regard- 
ing the group contribution methods, we find that 
the uncertainty in the values obtained, is too 
large (up to-about 15%) to be of any use for the 
required quantitative predictions. 

4. RESULTS OBTAINED WITH THE ESP MODEL, 

DISCUSSION 

Tables were prepared for cu. 200 organic 
compounds [91] for the partial parameters of the 
proposed four-parameter model, as obtained by 
the above procedures, extending the list we 
published previously [2]. Application of these 
values to different forms of analytical separation 
methods, in particular to the prediction of resi- 
dence times in gas-liquid (GLC) and reversed- 
phase liquid chromatography (RPLC), has been 
discussed elsewhere [2-6,40,49,50,51]. From 
those experiences it can be concluded that this 
ESP model is very capable of predicting trends in 
retention behaviour. 

In this work we are mainly interested in the 
general case of the prediction of liquid-liquid 
partition equilibria, including polymeric grafted 
phases and mobile phase effects from, e.g., 
mixed solvents. Being so closely related, predic- 
tions in organic compound-aqueous systems are 
of interest for these analytical separation meth- 
ods and vice versa. Moreover, chromatographic 
techniques can be fruitfully used to obtain ex- 
perimental data on partitioning in these systems. 
With the aid of the obtained partial ESP parame- 
ters it is possible to find Q priori predictions of 
partition coefficients in liquid-liquid systems, 
based on eqn. 38. The widely accepted octanol- 
water data according to Hansch and co-workers 
[44,45] are good test data for the predictive 
ability of the proposed ESP model. Apart from 
liquid-liquid partitioning data of solutes in oc- 
tanol-water and solvent-water systems, Hansch 
and co-workers also presented a method for 
deriving partition data from those measured in, 
e.g., octanol-water to an arbitrary solvent-water 
system. 

We tested the ability of the present ESP model 
to perform the same task. The results are shown 
in Table 1, an extension of a table presented in 
earlier work [2]. The table indicates, in agree- 
ment with the observations by Park and Car-r 
[51], that a priori prediction of partition data by 
the ESP model leads to errors up to about 20%. 
Especially for such polar substances as used 
here, including water, this is considered to be an 
encouraging result, taking into account the rela- 
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TABLE 1 

PARTITION COEFFICIENTS OF SOLUTES IN SOLVENT-WATER SYSTEMS AS PREDICTED WITH ESP AND THE 
HANSCH METHOD 

Solute 
i 

Solvent 

P 
Log K,w 

ESP 
prediction 

ExptlP 

LotI Kow 

ESP 
prediction 

Recalc., 
eqn. 42 

Lo!%? Pow 

Recalc., 
Hansch 

ExptIP 

Ethanol Carbon -1.51 -1.61 -0.16 0.18 0.47 -0.32 
Phenol tetrachloride -0.42 -0.42 1.50 1.46 1.55 1.46 
Aniline 0.22 0.25 1.23 1.83 1.11 0.94 
Methanol Chloroform -1.63 -1.63 -0.70 -1.47 -0.66 -0.66 
Ethanol -0.80 -0.85 -0.34 -0.42 -0.18 -0.32 
Phenol 0.42 0.35 1.43 0.97 1.53 1.46 
Aniline 1.44 1.32 0.97 1.0 0.90 0.94 
Ethanol Benzene -1.60 -1.54 -0.24 0.36 -0.13 -0.32 
Aniline 0.93 1.00 0.55 -0.50 1.24 0.90 
Acetonitrile Diethyl ether -0.11 -0.22 -0.19 1.12 -0.08 -0.34 
Acetone -0.14 -0.21 -0.09 1.03 -0.06 -0.24 
Pyridine 0.02 0.08 0.75 2.05 0.92 0.64 

o Experimental data from refs. 44 and 45. 

tive ease with which the partial parameters have 
been obtained. Also, it shows that the ESP 
model is equally suited to recalculate data ob- 
tained in one particular phase system to another 
as the widely used Hansch method. It shows 
clearly that large deviations may sometimes 
occur, but none worse than those in the Hansch 
method. 

Another example of the reliability of ESP 
predictions for liquid-liquid partitioning is given 

in Table 2, where experimental partition co- 
efficients of alkanes in glycols obtained by FIA 
are reported, as obtained at low pressures and 
room temperature for the systems heptane- 
diethylene glycol (hd) and heptane-triethylene 
glycol (ht). Ag ain, the a priori prediction of the 
ESP model is seen to be acceptable, but devia- 
tions up to about 20% occur, just as when 
Pierotti et d’s correlations [92] are used. Pub- 
lished results [2-6,38-40,49,50] demonstrate that 

TABLE 2 

COMPARISON OF MEASURED (BY FIA) AND PREDICTED PARTITION COEFFICIENTS IN HEPTANE-GLYCOL 
SYSTEMS AT LOW PRESSURES AND 25°C 

Solute K x,hd K I,hl 

CaIc. 

1921 

Predicted, 
ESP 

Exptl., 
FIA 

Cd. 

WI 
Predicted, 
ESP 

Exptl., 
FIA 

Benzene 0.221 0.21 0.23 0.323 0.37 0.39 
Butylbenzene 0.033 0.03 0.03 0.052 0.05 0.05 
Cyclohexane 0.033 0.03 0.02 0.038 0.03 0.03 
Decalin 0.013 0.01 0.01 0.022 0.02 0.02 
Naphthalene 0.263 0.27 0.29 0.667 0.65 0.67 
Terphenyl 0.236 0.23 0.26 0.608 0.68 0.71 
Tetrahn 0.096 0.11 0.10 0.182 0.17 0.15 
Toluene 0.112 0.12 0.13 0.16 0.18 
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our four-parameter ESP model is consistent and 
that no important molecular interactions (e.g., 
induction) are left out. This is further sustained 
by the observation that retention times of solutes 
not contained in a linear regression procedure to 
find the partial parameters [2] show good agree- 
ment between experiment and prediction (see 
below). 

For instance, in GLC with dinonyl phthalate 
(DNP) as the stationary phase, the experimental 
retention times and activity coefficients are in 
good agreement (deviation ~~20%) with those 
predicted from the above characterization of 
DNP, also at different temperatures. As another 
example, in liquid-liquid chromatography 
(UC) we found that the actual partition co- 
efficients determined from retention times, eqns. 
2 and 3, using n-hexadecane as the stationary 
and water as the mobile phase and alcohols and 
ketones as the solutes, the predicted K values 
are again within 10% of the measured values. 

Concerning RPLC, we show here the results 
of the ESP characterization method on a series 

of laboratory-made phases chemically bonded to 
the surface of lo-pm porous silica particles and 
containing a polar group at the non-bonded 
chain end. These bonded phases do not behave 
like bulk liquids, so that it is impossible to 
estimate their solubility parameters by the pro- 
posed methods. Measurement of the retention 
times of 11-22 solutes with known partial solu- 
bility parameters and application of linear regres- 
sion with eqn. 33 gave the partial parameters 
for these unknown phases reported in Table 3. 

Again, the internal consistency of the ESP 
model is proved by the near equality of the two 
total S, values, obtained in two different ways, 
(a) and (b). We believe that this application of 
the ESP model to characterize unknown or 
complex liquid (fluid) phases in terms of partial 
solubility parameters, by calibration with well 
characterized standard solute compounds, is a 
very useful tool, especially with complex mix- 
tures and if no universal equation of state can be 
used to define its physico-chemical behaviour 
(e.g., in RPLC with grafted substrates). 

TABLE 3 

CHACIERIZATION OF CHEMICALLY BONDED STATIONARY PHASES BY RPLC WITH WATER AS THE MOBILE 
PHASE (20°C) 

6 Values in (cal/mI~mole)“2; for (J/ml)“*, multiply by 2.04. 

Chemically bonded phase 
with polar end-group 

8ra 

(a) (b) 

Methoxyphenyl 
Aminophenyl 

TrigIycine 
N,N - Dimethylaminophenyl 
Propylamine 
-(CH,),N=C(CH,)C,H,C=N 
-(CH,),N=cHC,H,N(CH,), 
-(CH,),N=C(CH,)C,H,NH, 
_(CH,),N=C(CH,)C,H,NO, 
--(CH,),N=(CHC,H,N=),CHC,H,NH, 

6.46 1.06 0.14 2.57 6.61 6.60 
6.66 0.81 0.18 2.32 6.77 6.77 
7.21 1.41 0.19 2.23 7.88 7.40 
8.27 0.59 0.38 1.20 9.10 8.35 
7.60 1.13 0.13 2.04 8.11 7.72 
9.06 0.56 1.54 2.08 10.34 
9.08 0.85 0.69 5.10 10.16 
7.52 0.50 0.45 6.08 8.02 
8.49 0.72 0.84 2.17 9.32 
8.43 0.87 0.67 7.09 9.41 
9.14 0.85 0.52 3.80 9.87 

a (a) Obtained as independent value from the linear regression; (b) obtained as the sum of all partial Par~ete~, eqn. 3% 
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4.1. Relative characterization of 
chromatographic systems 

Because of the internal consistency of the ESP 
model with RPLC and for that matter with other 
liquid-liquid systems, there is in fact no need to 
use standard calibration compounds with known 
partial solubility parameters. These can be at- 
tributed to the standard compounds in an arbi- 
trary way, as first proposed by Rohrschneider 
[42,43] for gas-liquid chromatography. Rohr- 
Schneider was the first to recognize the pro- 
perty inherent in the RST for partitioning 
systems that the logarithm of partition coeffi- 
cients (or their ratios) are described by a bino- 
mial function whose terms are composed of two 
factors, one of which depends on the type of 
solute only and the other on the nature of the 
phase system only. This property is clearly 
shown in eqn. 40, but on closer inspection also in 
eqn. 38 for the partition coefficient(s) them- 
selves, provided that the entropic terms in the 
molar volumes are neglected. As a result, 

In KiP = ailzpl + ai2zp2 + - - - + aimzpm 

m 

where a, characterizes the nth type of molecular 
interaction of solute i and .zp. that of the phase 
system p. The ESP model prescribes a maximum 
of m = 5 of such interaction terms (including 
induction), but in practice it is very possible that 
less than five parameters are sufficient to charac- 
terize the whole partitioning system. 

The determination of the interaction coeffi- 
cients a and z, in principle to be found from the 
ESP estimation procedures, may also proceed in 
a completely experimental way. To do so, we 
have to measure the partition coefficients of at 
least m standard solutes on m different phase 
systems, so for solutes i ranging from 1 to m on 
each phase system p yields a system of m linear 
equations: 

In KI,P = allzPl + a12zPa + - - - + almzpm 

In KZ,P = aZ1zPl + aZ2zP2 + - - - + a2,,,zpm 

In K,,_, = a,lzpl + am2zp2 + - - - + ammzpm 

We can solve zpl to zpm once we know the 
coefficients a, I to arnm . Each standard solute can 
now be provided with arbitrarily chosen aiP 
coefficients (Rohrschneider chose, for instance, 
100, 0, 0, 0, 0 for standard solute 1, 0, 100, 0, 0, 
0 for solute 2, etc., i.e., aiP = 100 for i =p, 
otherwise aiP = 0) to obtain the z-values for 
phase p, as based on these arbitrary a values. If 
this is performed on m phase systems with the 
same m standards, all z values are known for 
each phase system and each phase system has 
now been characterized by these z values. 

Once this has been done, each new solute that 
was not chosen as a standard should be par- 
titioned in each of the m phase systems thus 
characterized, to obtain the a values for that new 
solute from its measured K value in each phase 
system. The new solutes thus characterized can 
subsequently be used to determine the charac- 
teristic z values for new phase systems, etc. 
Because of the already proven consistency of this 
RST-based model, the arbitrariness of the co- 
efficients is no problem. The choice of the initial 
values is, however, not optimum in the sense 
that each product az represents an interaction 
energy of some type (dispersion, orientation, 
etc.) and the ratio of those interactions is differ- 
ent in each compound (as reflected by the values 
of the partial solubility parameters). Assigning 
arbitrary values to the a and z values conflicts 
with those ratios, which was the reason why 
Rohrschneider carefully chose strong representa- 
tive compounds for each type of interaction as 
the standards and assigned a maximum value to 
that particular interaction. Naturally, however, 
we can find the optimum values of the standard 
coefficient matrix: 

a11 a12 aI3 . . . al, 

a21 a22 a23 + - * a2rn 

l-4 = 
a31 a32 a33 - - . a3m 

a ml am2 am3 - . - amm 

by requiring that the difference between the 
experimental KiP and that predicted with eqn. 43 
for every combination of m standard solutes is 
minimal, i.e. according to the least-squares 
method: 
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We tested this concept in an HPLC-FIA study 
where twenty solutes were analysed in seven 
phase-water systems, viz., isooctane 

a set 8 x 20 partition co- 
efficients, some of which were checked by static 
shake-flask measurements. For a two-parameter 
characterization of the partitioning systems, eqn. 
43 yields (on a decimal logarithm basis): log 

J&, = allZpl + al+ and log KZ,p = aZIZpl + 
a22zp2, i.e., we need to choose two standard 
systems. If we take rather arbitrarily iC,-W and 
O-W as being characterized with coefficients 

(z pl,zp2) = (1,0) and (O,l), respectively, all co- 
efficients for the solutes ail,ai2 are known as 
a,, = log Z&c and ai = log Ki,,. Multiple linear 
regression yiilds the best match coefficients for 
other phase systems, e.g., (C,H,-W) = (0.70, 
0.09), (C,H,,-W) = (0.84, 0.13), (C,-W) = 
1.01, 0.01) and (CC,-W)= (1.35, 0.44). Not 
surprisingly, it becomes clear that isooctane and 
n-octane are very much alike. 

This result is now to be used to predict 
partition coefficients in any of the characterized 
phase systems for all solutes included. For in- 
stance, in C,H,,-W we expect log Ki,c,u,, = 
0.84ai, + O.l3a,,, and find that these predicted 
values deviate by 20.08 units from the ex- 
perimental results, i.e., a 12% error in K is 
obtained. The same applies for the C,-W system 
but for the C,H,-W system the deviation in- 
creases to kO.15 units, i.e., 40% in K. The latter 
is obviously caused by the fact that two parame- 
ters are not adequate to cover all types of 
interaction, e.g., in the case of C,H,-W the 
aromatic properties are not well described by the 
choice of two non-aromatic standard systems. 

We found that for m = 3 and including aro- 
maticity in one of the standard compounds the 
error to reproduce the experimental K values 
was reduced to lo%, or 50.04 units. Defacto a 
fourth main coefficient is expected to reduce the 

error further, but currently too few data are 
available to verify this. 

5. THEORIES FOR GRAFIED LAYERS 

In the foregoing we observed that the ESP 
model is well able to characterize partitioning 
phase systems, but only for simple molecules 
that lend themselves to treatment via an EOS. 
For other cases, which include the grafted phases 
in use for RPLC, characterization is only pos- 
sible in a relative way (with respect to arbitrarily 
chosen standard systems or standard solutes). 

Theories specifically designed for a priori 
predictions and absolute characterization of 
grafted layers were reviewed by Dorsey and Dill 
[ll] . In older views the grafted chains are seen as 
closely packed rigid rods, or slightly better, as 
“furry” (or “bristle, stacked, brush” type) rod- 
like chains. They overestimate the ordering of 
the alkyl chains and do not treat the solvent 
penetration in the grafted layer adequately. 
These oversimplified rod-like chain models, 
which do not agree with experimental findings, 
can serve qualitative purposes at best, the more 
so as there is experimental evidence that grafted 
alkyl chains are flexible [93,94]. 

In the last decade several lattice theories, 
based on extensions of the Flory-Huggins lattice 
theory for polymers in .solution [37] have been 
applied to the RPLC retention mechanism. 
These theories do take some aspects of the 
molecular organization in the grafted layer into 
account. Mat-tire and Boehm [17,18], in an 
extension of a mean field statistical thermody- 
namic adsorption theory for liquid adsorption 
chromatography, allowed for chain flexibility, 
but assumed a uniform composition and density 
in the grafted layer, resembling the case of a 
liquid crystalline phase organization. In their 
theory the first segment of the grafted chain is 
Iixed to the solid surface, while the last segment 
is fixed in the layer adjacent to the mobile phase. 
Also, to evaluate the configurational free energy 
contribution, they allow chain segments to be 
oriented independently in all directions, not 
preventing backtracking of one segment upon its 
predecessor, and do not take into account vari- 
ation of chain density with distance from the 
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surface. Hence here again the ordering in the 
stationary phase is substantially overestimated. 
However, the Martire-Boehm theory qualita- 
tively describes several effects much better than 
rod-like models. Martire and Boehm also found 
a strong correlation between ~q~d-liq~d parti- 
tioning and retention in RPLC. 

Dill and co-workers [8-121 described the 
grafted layer as small flexible chain molecules in 
different confo~ations, forming a layer of con- 
stant density. Unlike Mar-tire and Boehm, their 
description of chain conformations is more de- 
tailed (they correctly preclude backfolding of 
segments in a chain), but they do not include the 
interaction between grafted chains and solvent, 
while assuming that solvent is absent in the 
grafted layer. Artificially, they treat adsorption 
separately from partitioning by assuming a pla- 
nar interface between chain phase and mobile 
phase, thus allowing solute molecules to have 
interface surface contacts only, not being embed- 
ded in the chain phase. However, Dill and co- 
workers also found a strong correlation between 
squid-liquid partitioning and RPLC retention. 

5.1. Introduction to conformational aspects of 
chain molecules 

The physics dealing with the size and shape of 
polymer molecules has undergone a tremendous 
development, and we refer to the pertinent 
literature for reviews [23,37,95-1051, including 
some particularly recommendable accounts 
~95,97,98,1~,1~,105]. The essential feature of a 
polymeric chain molecule is its connectivity. The 
simplest possible model of a macromolecule is a 
linear long sequence of (M/M,) monomer seg- 
ments of molecular mass MO each. Because of 
the rotational freedom of the chemical bonds 
between the monomer units, the chain can 
assume a huge number of different spatial ar- 
rangements and the “shape” of the whole chain- 
like structure is continuously changing. The final 
shape of the macromolecule is a statistically 
weighted average of the shapes of these con- 
formations. A picture often used to represent 
such a real chain is that of the “freely jointed 
equivalent chain” (according to Kuhn), consist- 
ing of a sequence of identical and rigid segments, 

with bond angles that can assume any value. The 
length of a segment (a) and the number of 
segments (N) are adjusted so as to mimic the 
length (L = Nu) and flexibility of the real chain, 
i.e., with increasing flexibility of the real chain N 
increases and a decreases. Typically each seg- 
ment represents two to five (maximally nine) 
monomer units. 

As each segment has a characteristic length (a) 
and a (bond) direction, a convenient and simple 
idealization of flexible polymer chains is found in 
simulating it by a random walk, consisting of N 
steps of length u, starting at the origin (the first 
segment of the chain) and reaching out (“dif- 
fuse” or random fly away) to an arbitrary end- 
point, where the last segment of the chain is 
supposedly located. The analogy between the 
two processes (diffusion and the formation of a 
random coil) is obvious, if we imagine that a 
diffusing particle leaves a trace of its movements 
in time: a perfect picture of a random coil chain 
emerges, with the associated density distribution 
of segments being Gaussian. From this the 
avera 
as (r B 

e (mean square) distance (r’) is obtained 
) = Nu2. The quantity (r’) has a promi- 

nent status among polymer properties, being 
related to experimental characteristics such as 
viscosity, diffusion, sedimentation and light scat- 
tering. Of course, the average end-to-end dis- 
tance I is now obtained as the root of the mean 
square end-to-end distance: 1 = (r’) “‘. 

Volkenstein [ 1011 proved mathematically that 
the mean-square end-to-end distance (Na ), on 
average, is the largest square distance between 
any pair of segments in the chain, and represents 
as such a good parameter for the characteriza- 
tion of the “length” of the chain. The fact that 
(r2) = Na’ is a factor l/N smaller than the 
squared stretched chain length (Na)2 indicates 
that for not too small a number of segments N, 
the chain is strongly coiled. We recall that I= 
(r2) l’* and stress the fact that this is not identi- 
cal with the (linear) mean end-to-end distance 
(r) . The most probable end-to-end separation of 
this spring-like chain can be envisaged to result 
from the tendency of the chain ends to equili- 
brate between two opposing actions, i.e., either 
to diffuse away from one another by the three- 
dimensional (thermal motion) random walk or to 
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contract according to an entropic spring force. 
The latter is readily found from using the percep- 
tion of macromolecular chains being modelled 
according to Hookean springs. Later this spring- 
like picture, also used in polymer kinetics litera- 
ture [106,107], will be of use in the discussion of 
stretching of grafted chains. 

However valuable this idealized model is, its 
intrinsic artificiality is very clear: an obvious 
difference between a diffusing particle and a 
polymeric chain is that the particle is free to 
cross its own path, while the chain is not capable 
of self-intersection, i.e., segments are not al- 
lowed to occupy the same space at the same time 
(so-called long-range interactions). Also, when 
two segments are in close contact, (short-range) 
interactions (attraction or repulsion) may occur. 
For the description of volume exclusion of poly- 
mer chains, we shall follow the early and com- 
paratively simple approach of Flory [37,96,100], 
which yields very good results. This expansion 
due to excluded volume effects makes itself 
apparent through experiments, e.g., viscosity 
measurements [108]. On this we base the notion 
of the Flory radius, R, = aN315, also used by De 
Gennes and co-workers in their successful scaling 
theory [23,24,109-1131, to represent a realistic 
polymer size parameter. We recall that in good 
solvents the polymer coils are swollen and con- 
tract with diminishing solvent quality. For in- 
stance, in a 8 solvent the radius of free linear 
chains is aN1’*, whereas in poor solvents the 
chains further collapse strongly (via a phase 
transition) and result in a radius of aN”3 
[23,37,97,113]. 

We recently reviewed the case of chain mole- 
cules near a solid surface and in pore spaces 
[105] for application in size separation chroma- 
tography [i.e., in size-exclusion (SEC) and hy- 
drodynamic chromatography (HDC)] . Using the 
theory of De Gennes and co-workers [23,109- 
1111, it is possible to picture a confined and 
wriggling chain in a pore as a train of contacting 
segments or “blobs” forming a pearl necklace. 
Successive blobs act as hard spheres, which on 
the scale of the pore size are each allowed to 
behave as in the unrestricted free solution, i.e., 
the blobs show a knotted and partially swollen 
structure as described by the Flory statistics as in 

free solution. Thus the chain is represented by a 
succession of N,, blobs of g segments each and 
size D, = 2R, = 2R,. Particle (= blob) size equals 
the channel size as the chain is being squeezed 
into the pore confinement. In view of the sup- 
posed analogy with the Flory case, we have that 
each blob shows the same relationship between 
size and number of segments as in free solution. 
Hence D, takes over the role of R, (omitting 
numerical factors such as 2, as is customary in 
De Gennes’ scaling theory), and g the role of N. 

5.2. Conformations of grafted chains 

For the present discussion, terminally attached 
grafted chains (if closely packed also called 
polymer brushes) are of interest. It is not un- 
expected that the size of polymers attached to 
interfaces shows a similar behaviour towards 
changing solvent quality to the behaviour of free 
coils, viz., a collapse of chains is predicted as the 
solvent quality diminishes, although the differ- 
ences in configuration between grafted chains 
and those in free solution will lead to corre- 
sponding differences in collapse behaviour. 

De Gennes [24], using scaling theory, obtained 
a semi-quantitative insight in the conformation 
of these terminally grafted chains on a solid 
surface, clearly discriminating between cases of 
different surface coverage, ranging from sepa- 
rated chains to closely packed brushes. In the 
case of low coverage, such that coiling of the 
chains can take place in an unobstructed way 
(except for the presence of the solid surface), 
each coil can be envisaged to occupy roughly a 
half-sphere with a radius comparable to the 
Flory radius for that coil in a good solvent: the 
“mushroom” regime [113, 1141. Owing to the 
lack of interactions between coils, the chains 
behave essentially as free chains in this instance, 
also with respect to collapse behaviour with 
diminishing solvent quality: strong collapse oc- 
curs in this low grafting density regime. 

For example, Auroy et al. [114] recently 
proved experimentally that in good solvents at 
wide spacing of chains, hemispherical or at least 
swollen juxtaposed spherical cuts are formed, 
extending clearly away from the silica surface. In 
poor solvents, however, very thin films are 
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formed, spreading flatly on the surface, which 
are strongly collapsed coils. However, as there 
are no interactions, no phase changes can occur. 

5.3. Zntroduction of the lattice for grafted layers 

Introducing a cubic surface lattice with grid 
size a, corresponding to the segment size of the 
chain molecule, allows an estimation of the 
conditions needed to obtain these separate coils 
at the surface: for touching coils which occupy an 
area of about Rs each (omitting numerical fac- 
tors such as 7r/4) the maximum number of chains 
that can be grafted in the lattice equals the 
lattice area divided by Rk, from which we obtain 
the maximum separated chains fraction rrSsep of 
grafted chains as a,,, = Ne6”. For all cases u < 
u sep and for a random distribution of grafting 
points it is illustrative to obtain the average chain 
segment concentration distribution perpendicular 
to the solid surface, i.e., in the z-direction, in the 
cubic lattice also in units of a. In such a lattice 
the concentration distribution c(z) equals the 
volume fraction distribution q(z) and so in the 
lower limit of z = a (i.e., in the first layer above 
the surface) we expect the fraction of grafted 
volume elements to be a, so q(a) = u. On the 
other hand, collecting all segments of all grafted 
chains in the layers up to z = R,, where each 
chain contains an average chain concentration of 
NIRf , the overall volume fraction is estimated 
to be p(R,) = N(RiIR:) = N/R, = uN2’5. Inter- 
polating between the two limiting cases with the 
power fit function p(z) = u(z/a)m, as is custom- 
ary in scaling theory, it is seen that the unknown 
exponent m should equal 2/3 in order to match 
the condition for cp(R,). 

This result illustrates that the grafted chain 
density profile perpendicular to the solid surface 
is far from constant, starting at cp = w at the 
surface layer, going through a maximum 
(=oN”~) at z = R, and then dropping rapidly 
for distances >R, from the surface. However, 
the behaviour is essentially that of free coils, 
including the strong collapse behaviour. Later 
we shall refine this semi-quantitative result in a 
more sophisticated lattice model, but at present 
we shall proceed with the qualitative treatment 

of the more practical situation that the grafting 
density fraction u becomes higher than a,,, = 
N-6’5, which occurs for separation distances 
between chains <RF. Coils of the grafted chains 
tend to overlap in this case and stretch away 
from the grafting surface to avoid a high segment 
density. 

5.4. Grafted layer thickness 

The brush height h in the strongly stretched 
chain phase is (for large enough N) readily 
B-R,, which can be shown again with simple 
arguments. Consider a square surface area A 
consisting of Nsites surface elements, which con- 
tains nchains attached chains at average distances 
D from each other. The grafting density u is by 
definition IZ chainslNsites and so (+ = (AID2)I(AI 
a”) = (a/D)‘. B y analogy with the case of con- 
fined polymer chains, a grafted chain may be 
envisaged as being subdivided into a string of 
“blobs”, each of size D and each containing g, 
monomers, such that g, = (D/a)“3 by analogy 
with N = (R,la)5’3. As D = agg5, we can picture 
the grafted chain as a cylindrical entity (“cigar”) 
with an effective total length T,, = (N/g&D = 
aN(alD)2’3 = aNu113. As D <CR, in the over- 
lapping chains regime, g,, << N and 5?,, >> R,, 
i.e., the chains are strongly stretched, mainly 
perpendicular to the solid surface, such that the 
“blobs” which act as hard spheres are densely 
packed into cylindrical “cigars” with volume 
2?D 2. The brush height h equals Zr, = aNu”3, 
which shows that brush height is proportional to 
the molecular mass of the grafted chains. It 
should be stressed that, although the chain 
consists mainly of a linear string of “blobs” along 
the normal to the solid surface, there is a certain 
spread parallel to the wall plane, as neighbouring 
“blobs” from nearby chains strongly interact 
(which is why stretching occurs in the first place) 
and are potentially able to enter, at random, the 
cylindrical volume of each individual chain. 

Summarizing the above, we find depending on 
the grafted density two extreme regions, one 
unstretched (for small a) and one stretched. It is 
predicted that the segment density profile in both 
instances near the wall is depleted [q(a) = a], 
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follows a 2/3 power relation with z in the region 
a < z < D, and for z > D in the case of moderate 
grafting density the concentration reaches a 
nearly constant value (q = g,a3/D3 = CT~‘~) up to 
z=Zn, whereas for z > Zu the concentration 
drops off abruptly (as in the case discussed for 
non-overlapping chains). 

The above picture is approximate only and 
gives a qualitative insight into the behaviour of 
attached chain phases in the case of good-solvent 
Flory-type chain statistics. Halperin [113] and 
Auroy et al. [115] have extended the line of 
reasoning to poor solvents, in which event it 
appears that the brush height is proportional to 
Nu rather than to No”~ as in good solvents, 
experimentally confirmed by SANS experiments 
[116]. In both instances the layer thickness 
appears to be a linear function of the molecular 
mass of the chain, the signature of chain grafting 
in the brush regime, where lateral interchain 
interactions tend to stretch the polymer into the 
solvent phase, irrespective of solvent quality. 
The latter is indicated by the variation of the 
layer thickness with the grafting density to the 
power l/3, rather than linearly as in a good 
solvent, whilst repulsive monomer-monomer 
interactions result in a less dense interfacial layer 
than in a poor solvent. 

The general picture which arises from these 
(scaling) laws is that the grafted layer is to be 
seen as a close packing of segments (monomers), 
while the density or volume fraction of the 
monomers cp inside the layer is fixed by the 
solvent-polymer interactions. For poor solvents 
cp ranges from cu. 0.9 to 0.6, i.e., almost no or 
little solvent is present and cp is roughly equal to 
the mean volume fraction, which points to a 
more or less step-function-like behaviour of 
q(z). Although the chains are collapsed, the 
resulting layer thickness still increases linearly 
with increasing molecular mass, i.e., the chains 
tend to be stretched and are certainly anisotropic 
in configuration, as predicted by Halperin [113]. 
This “weak” collapse behaviour contrasts very 
much with the strong collapse behaviour of free 
coils and widely spaced sparsely attached chains: 
although the layer contracts with diminishing 
solvent quality, the chains remain stretched i.e., 
h = Nu, even for poor solvents. 

In good solvents, on the other hand, it appears 
that the average volume fraction of monomers 
drops to cu. 0.2 (almost equal to the concen- 
tration of the original grafting solution), indicat- 
ing the presence of much solvent, while the 
density profile is smoother than a step function, 
and a parabolic profile would fit the observations 
better, as has been suggested from theoretical 
work (Milner et al. [32], see later). However, the 
observed “blob” size is very close to the average 
distance between grafting sites, offering at least 
qualitative support to the De Gennes scaling 
theory. 

The insight it offers into the behaviour of 
grafted layers as used in RPLC is of importance 
from two points of view: (i) the structure of the 
layer as a function of solvent quality (mixed 
solvents, preferential solvation) and (ii) the 
concentration profiles of both chain segments 
and solvents towards the solid surface, which 
largely determine the penetration of solute mole- 
cules to be separated. 

With regard to the layer structure (i), Auroy 
and Auvray [116], using SANS experiments, 
obtained layer thicknesses of grafted polydi- 
methylsiloxanes (PDMS, M = 166 500) on por- 
ous silica in mixtures of methanol (MeOH, poor 
solvent) and dichloromethane (DCM, good sol- 
vent). As already naively expected, effects of the 
preferential solvation of one of the solvent 
components, DCM, to the PDMS layer occur. 
Almost pure DCM is trapped preferentially near 
the solid surface rather than near the solvent 
interface, a view that is supported to some extent 
by Monte-Carlo calculations [ 1171. 

Unique and very interesting are the experi- 
ments reported by Auroy and Auvray [116] in 
which they brought about the same collapse 
effects not with the chemical composition of a 
binary mixture of solvents but with temperature. 
Using styrene, which is a 8 solvent for PDMS at 
about 30°C it appears that all the features are 
the same, but the total change in layer thickness 
(which is now linear in T) requires a broad 
temperature range of more than 80°C. Although 
it is far simpler to change the stretching be- 
haviour of the grafted layer by a relatively small 
composition change of solvent systems, both 
temperature and the composition effects are 



160 R. Tijssen et al. i .I. Chromatogr. A 656 (1993) 135-196 

shown to be of importance, also in connection 
with RPLC. 

5.5. Introduction of potential energy fields 

Although the present line of thought based on 
scaling theories has been further extended to- 
wards the conditions more appropriate for 
RPLC, including the presence of free solute 
chain molecules, which partition between chain 
phase and solvent phase, it is again stressed that 
the approach is necessarily approximate only. 
More recent work, based on more precise self- 
consistent-field (SCF) methods [20,32-34,118, 
1191, has shown that the simplified energy- 
balance or scaling (blob) arguments miss several 
important features of the brush, which has so far 
been suggested to consist of a mainly homoge- 
neous layer of considerably stretched overlap- 
ping chains with a nearly constant concentration 
of segments, and only at the peripheries of the 
layer are rapid changes in concentrations pre- 
dicted. 

A major point of criticism to this simple 
picture is that chains do not’ have to behave 
alike: the conformations of different chains in 
the brush are not necessarily similar, chains are 
not uniformly stressed, and the free ends of the 
chains are not required to lie at the extreme 
front edge of the brush, as is tacitly assumed in 
the De Gennes’ theory [23,24,120]. Thus, the 
density profile is not necessarily a step function, 
and SCF calculations where no a priori assump- 
tion is made on the monomer density profile 
indeed show that a density profile is parabolic, 
going continuously to zero at the outer extremity 
of the brush [20,32,119]. This is largely con- 
firmed by molecular dynamics [121] and Monte 
Carlo simulations [21]. Even more convincing is 
the mathematics proof by Klushin and Skvort- 
sov [122] that in order to obtain stretched chains 
at all, the density should decrease with the 
distance z from the grafting plane a priori. 
Mimer et al. [32] proved also that the Alex- 
ander-De Gennes ansatz of a step function 
profile is unstable. 

As many gross features of brushes are some- 
what insensitive to the details of the parabolic 

structure, this non-uniform stretching of chains 
from the grafting surface towards the brush’s 
extremity has been a useful working hypothesis 
for a long time; for example, the mean brush 
height, being defined by the first statistical mo- 
ment of the monomer density, is qu~itatively 
well described by the step function ansatz. How- 
ever, properties that depend in detail on the 
monomer density in the outer fringe of the brush 
are expected to be sensitive to a non-abrupt 
decrease in monomer density at the brush-sol- 
vent inter-facial region. Properties belonging to 
this class are compression forces required to 
compress the brush, hydrodynamic penetration 
of shear flow alongside a brush and non-uniform 
partitioning of solutes between solvent and brush 
phases. The latter two aspects are of impo~ance 
to the chromatographic processes we intend to 
describe, which is why the parabolic deviation 
from the step function ansatz in monomer den- 
sity is necessarily to be discussed in the follow- 
ing. Before going into that, we shall attempt to 
clarify the situation by way of elementary 
reasoning. To this end we refer to the previously 
introduced simple picture of a chain molecule as 
a Hookean spring, with (entropy-based) force 
9’ = Hz (H = force constant), and in unper- 
turbed conditions the resulting mean-square end- 
to-end distance equals is (r2)sprinp = 3kTIH. In 
the present case of stretched and termin~ly 
attached chains, it is obvious that stretching the 
spring-like chains pe~endicular to the grafted 
surface requires some counterforce equal to .?$ 
but opposite in sign to be provided by interac- 
tions between segments in the brush phase itself. 

The criterion for the thermodyn~ic equilib- 
rium being reached in any system is that the 
chemical potential be constant throughout the 
system, so that dp* = 0, where p* is the overall 
chemical potential, consisting of the classical 
chemical potential p and the external field 
potential pext: p* = p f peXt; cf. Guggenheim 
[123]. Here p = pe + kT In c, which describes 
intermolecular interactions including entropic 
cont~butions and enthalpic ~nt~butions from 
attractive forces such as dispersion, orientation, 
induction and hydrogen bonding; c is a relevant 
concentration, which is interpreted as the seg- 
ment density in the present case of chain mole- 



R. Tijssen et al. I J. Chromatogr. A 656 (1993) 1351% 161 

cules; peXt, on the other hand, includes potential 
energy to the system from external fields such as 
electrical and magnetic fields, temperature and 
composition gradients, and is treated identically 
with the classical (internal) potential p (for a 
discussion on this, see Giddings [124]). In the 
present case of spring-like chain molecules, peXt 
may be equated with the potential energy associ- 
ated with the spring force field, i.e., peXf = 
lIspring, where the latter is known by virtue of the 
general relationship between potential energy 
and driving force in potential theory: 9 = 
-dU/dz (in the one-dimensional case). 
Thus F + Fs = 0, i.e. -dpldz + Hz = 0 and so 
-kT d(ln c)ldz + Hz = 0, from which the den- 
sity profile follows as being exponential, and in 
a first approximation for small z parabolic in 
nature c = C exp[-Hz2/2kT] = C[l - Hz*/2kT], 
where C is a constant equal to the grafted 
density at z = 0. Also, c = C exp[ - Uspring lkT], 
which shows a Boltzmann density profile. This is 
not unexpected because if we employ the picture 
of the chain as being a random flight process 
diffusing away from the grafted anchoring point 
(D = u* /6r) (1051 while undergoing an external 
force or potential, we would have had to solve 
the steady-state diffusion equation, -D[(dcl 
dz) + (clkT) d(U,,,)ldz] = 0, whose solution is 
the Boltzmann distribution for c(z) given above. 

In the present light it is not surprising that in 
more quantitative analytical SCF approaches 
[32-34,125] both the density profile and the self- 
consistent potential fields are shown to be 
parabolic. This has been derived under the a 
priori assumption of strong stretching of the 
chains with respect to their Gaussian dimension. 
This assumption is not unrealistic in the moder- 
ate density (brush) regime, as discussed above in 
the work of De Gennes and co-workers, and 
allows the underlying SCF equations, basically of 
a diffusion type of equation, to be solved ana- 
lytically. The self-consistent field theories, where 
neither the potential field nor the density dis- 
tribution are known a priori, but which result 
from the requirement of self-consistency in ob- 
taining minimum free energy of the system, i.e., 
the potential generated by the segment distribu- 
tion must in its turn generate that same dis- 
tribution, can be divided into two large groups: 

mean-field lattice models and continuum space 
analogues. 

The continuum approaches apply to very long 
chains and utilize the analogy between random 
walk statistics and diffusion. For example, a 
continuum analogue of the Scheutjens-Fleer 
theory has been proposed by Ploehn et al. [29], 
which allows an analytical solution for the con- 
centration profile but, being based on an eigen- 
function expansion using the dominating terms 
only, this result is necessarily less accurate than 
the Scheutjens-Fleer lattice theory (to be de- 
scribed later). This approach is appealing 
through its more realistic continuum character 
and analytical solutions, the prevailing physical 
picture of the background mechanisms and also 
the close relationship with other well known 
diffusion-type theories (Casassa [126-1301, De 
Gennes [23], Doi and Edwards [131,132]). 
Drawbacks of this approach are the difficult 
tuning towards a variety of experimental condi- 
tions and the necessity of, albeit realistic, limit- 
ing a priori assumptions. 

In lattice treatments, on the other hand, the 
random walk is constricted to a discretization of 
space, an artificial approximation that may not 
accurately reflect the reality of continuous phys- 
ical space, especially near the solid surface, 
where details on a length scale comparable to the 
lattice segment dimensions may be lost. Further, 
model equations are written in finite difference 
form to facilitate the numerical treatment, which 
obscures the underlying physics. However, the 
easy adaptation to experimental conditions (e.g., 
the explicit modelling on a segment level basis 
that allows shorter chains to be considered, of 
much importance to RPLC) and the absence of 
approximations (other than the lattice discretiza- 
tion and mean-field assumptions) make the latter 
approach more attractive for our purposes. 
Moreover, extensive comparisons between lat- 
tice model-based numerical results and analytical 
approaches [32,133] prove the reliability and 
exactness of the lattice theory approach. 

6. SELF-CONSISTENT FIELD LATTICE THEORY 

As stated above, the most realistic approach 
(because of the lack of simplifying assumptions 
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on segment density distributions) can be based 
on the self-consistent field theory for adsorption 
(SCFA) originally developed by Scheutjens and 
Fleer [25] to describe adsorption of (homo)poly- 
mers on solid surfaces. The original theory has 
been extended to many other cases over the last 
decade and a generalized treatment of the theory 
has been given recently by Evers et al. [26]. 
Cosgrove et al. [20], Bohmer et al. [16] and 
Wijmans et al. [133] treated the case of grafted 
polymer chains with one of the segments an- 
chored to a solid surface, the case of particular 
interest in connection with RPLC. 

In contrast to all other theories, the SCFA 
theory relaxes the constraint of a “block” (or any 
other pre-assumed) concentration profile of the 
grafted layer and allows inhomogeneity in the 
direction perpendicular to the solid surface. The 
equilibrium distribution of each type of segment 
[solvent (possibly multi-component), chain and 
solute] is found as the result of the minimization 
of the free energy of the system. The model is 
most universal in the sense that it provides a very 
detailed insight into the spatial distribution and 
conformation of chain molecules [linear and 
branched homopolymers and copolymers, in- 
cluding systems with various chain lengths (mo- 
lecular mass distributions), functionalized mole- 
cules such as surfactants] in multi-component 
solvent systems. The SCFA theory does not 
make a priori assumptions about the conforma- 
tions of the molecules, and the required physico- 
chemical data for the parameters used are in 
principle subject to experimental measurement. 

To account for interactions between the vari- 
ous segments and to establish the relative occur- 
rence of different chain conformations, a con- 
venient lattice is used. The set of possible con- 
figurations of chain molecules in the lattice 
comprises a representative sample of the very 
large number of spatial distributions in a real 
system. The lattice used may be either flat, 
cylindrical or spherical, depending on the type of 
problem (e.g., for micellar association of am- 
phiphilic chain molecules a spherical lattice is 
used [27,28]; in the present case of “sorption” at 
or in hairy layers, the sphericity of support 
particles is assumed to be unimportant (the layer 
thickness for chain lengths <30 A is much 

smaller than the particle or pore size) and a flat 
lattice will be used. 

The equilibrium distribution of each type of 
segment is found as the result of the self-con- 
sistent minimization of the free energy of the 
system, subject to the packing constraint that 
every lattice layer has to be filled completely 
with segments of either type: solvent, chain or 
solute (here we do not consider the potential 
presence of vacancies, although in principle they 
could be treated as one of the components). 
Within each layer crowding neighbour effects 
between interacting segments are treated with 
the Flory-Huggins (or Bragg-Williams) mean 
field theory [37]. 

In a previous paper [16] we extended the 
SCFA theory to allow for RPLC conditions, 
which imply mixtures of different types of mole- 
cules near a grafted layer. All components, 
including the grafted chains, are allowed to 
adjust their local segment density to local condi- 
tions. This is in contrast with Dill and co-work- 
ers’ theory [8-111, where the segment density 
profile of the grafted chains is prefixed, and only 
the distribution of solute in the grafted layer is 
found from statistical thermodynamics. An addi- 
tional advantage over Dill’s model, where solute 
and solvent are always monomeric, is that flex- 
ible oligomeric solutes (and solvents) are al- 
lowed, just as in the model of Martire and 
Boehm [17]. This allows us to study the retention 
of flexible chain molecules. 

In the next section we shall give the principles 
of the SCFA theory, followed by a more detailed 
treatment of the present model and the deriva- 
tion of an expression for the distribution coeffi- 
cient and the capacity factor in terms of the 
SCFA theory. The effects of solvent quality, 
grafted chain length and surface coverage on the 
segment density profile and shape effects besides 
residual adsorption effects are considered. Seg- 
ment density distributions for monomeric and 
oligomeric solutes retained at a grafted layer are 
given. The retention of monomeric and oligo- 
merit solutes is studied as a function of solvent 
quality, grafted chain length, surface coverage, 
solute chain length and its composition. Also, a 
comparison will be made between solute dis- 
tribution near a liquid-liquid interface and at a 
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grafted layer in contact with a liquid phase. As in 
the SCFA theory there is, in principle, no limit 
to the system composition with respect to the 
number of different molecules and their chain 
lengths, we consider in this paper not only 
monomeric solvents and linear, flexible, solutes, 
but also mixed and/or non-monomeric solvents 
and rod-like and branched solutes. The role of 
residual hydroxyls and associated specific affinity 
for the solid surface and the case of mixed 
solvents will also be treated. 

6.1. General outline of SCFA theory 

The theoretical models that describe the (aver- 
age) configuration of (adsorbed) polymers can be 
grouped roughly into four categories: (i) single 
chain theories, (ii) scaling theories, (iii) (self- 
consistent) mean field theories and (iv) Monte 
Carlo simulations. The first group, being dedi- 
cated to the simple case of isolated chains only, 
are described in the earliest theories up to the 
work of Silberberg [134]. Scaling theories, using 
power law arguments [23], are known to be 
adequate for weakly overlapping long flexible 
chains in relatively dilute solutions in good 
solvents only. The application to block copoly- 
mer adsorption by De Gennes [24], resembling 
our case of terminally attached chains, pre-as- 
signs the shape of the density profile of segments 
and thus becomes of limited validity (selective 
solvents and small range of chain compositions 
only) as compared with the third group of 
theories, the mean field theories. Although in 
this group many theories also use specific as- 
sumptions on the segment density profile near 
the grafted surface (e.g., Martire and Boehm 
[17,18], Gast and Leibler [135], Dill and co- 
workers [8-12]), DiMarzio and Rubin [136] 
showed that these additional assumptions are not 
necessary. For the fourth group, the numerical 
Monte Carlo methods, Cosgrove et al. [20] 
proved for the case of terminally attached chains 
that the results are very similar to those obtained 
in the case of SCF calculations using the Scheut- 
jens-Fleer approach. 

This is strong support for the latter SCF 
method, and in view of the large difference in 
computational effort the SCF method is the 

preferred one. Scheutjens and Fleer in their 
SCFA theory combined the DiMarzio-Rubin 
concept with the Flory-Huggins mean field lat- 
tice theory [37], thereby extending the latter for 
polymers in solution to systems that are 
inhomogeneous in one direction, in particular 
perpendicular to a surface. In the SCFA theory 
the segmental interactions and the conformations 
of the molecules are interrelated in a self-con- 
sistent way: the distribution of molecules over 
various conformations depends on the local 
conditions that the segments experience as a 
result of all present chains in this particular 
distribution. Local conditions in this context are, 
for instance, interactions between the various 
components in the system such as the local 
magnitude of intersegmental/wall adsorptive 
forces or equivalently (as forces are negative 
gradients of potential energies) the local mag- 
nitude of a potential field. This picture of a 
segment density gradient perpendicular to and 
near a surface resulting from a potential field 
present is to some extent comparable to the 
Boltzmann concentration gradient of gases in our 
atmosphere which is exponential with height and 
settles itself as a result of the gravitational 
potential field perpendicular to the earth’s sur- 
face. In the same way, every segment ex- 
periences a potential depending on the distance 
to the solid surface and also on the mutual 
distances between segments. As the segments 
“feel” each other through the potential field 
only, a concentration profile of segments results, 
adjusted to the potential field that the segments 
themselves partly create. The situation is also 
analogous to the case of an interacting ensemble 
of elementary particles that populate the avail- 
able energy levels. To calculate the population 
density or the concentration profile if the poten- 
tial field is known or vice versa, statistical me- 
chanical rules (in the present case Boltzmann 
statistics) are applied. 

As said, for convenience, the molecules are 
placed on a lattice to allow an easy count of 
molecular conformations. The lattice sites are 
grouped in layers parallel to the surface, here 
assumed to be flat, and each layer is completely 
filled. Each chain-like molecule that consists of a 
number of, say, r segments fills the same number 
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of r lattice sites. Usually, but not necessarily, the 
size of the solvent molecules is assumed to be 
identical with that of one segment. As is known, 
polymer molecules that consist of a sometimes 
large series of segments can have various con- 
formations. For homopolymers, to some extent, 
the molecules can be described as a sequence of 
identical and rigid segments with bond angles 
that can assume almost any value. Typically, 
each segment represents 2 to cu. 5 monomer 
units. In equilibrium, the molecules are distribut- 
ed over their various possible conformations in 
the lattice such that the free energy of the system 
is at its minimum and in each lattice layer 
potential and concentration for each type of 
segment or molecule are mutually consistent. 

If we now adopt a mean field approximation 
within each lattice layer, i.e., density and poten- 
tial fluctuations within each layer are ignored 
and only gradients perpendicular to the surface 
are allowed, we reduce the immensely large 
number of possible conformations to a conveni- 
ently small number of relevant conformations. 
The only thing needed to characterize the (free) 
energy of a chain molecule in a certain con- 
formation is the position of the segments in each 
layer, rather than the exact spatial position of 
each segment. Therefore, it is sufficient to 
specify how many segments of a chain molecule 
are situated in each layer and a (relevant) 
conformation in the lattice is defined as the 
sequence of layers in which the subsequent 
segments of a molecule find themselves [25,26]. 
Thus, in Fig. 1 the top molecule has the con- 
formation l-l-2-2-3-4-5-5. 

Every segment experiences a potential, de- 
pending on the lattice layer the segment is in and 
the average segmental and solvent environment. 
The potential field is, of course, different for 
polymer segments, solvent and solute molecules, 
owing to the differences in interaction energies. 
In the lattice layer next to the surface, the 
potential also depends on the segment-surface 
interactions. Thus, the four terminally attached 
molecules depicted in Fig. 1, although having the 
same length (eight segments), all have different 
conformations and so different energy levels. 
The various possible conformations are not 
equally probable, however, and their frequency 

_L 
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Fig. 1. Schematic two-dimensional representation of the 
lattice. Some grafted chains and solute molecules are indi- 
cated, the remaining lattice sites are filled with solvent. From 
ref. 16. 

depends on the interaction energies, which in 
turn are a function of the local concentrations of 
segments. For instance, when a segment is 
placed in the lattice, a step into a region of high 
segment density is less probable. 

From the potentials, the statistical weights of 
the segment positions are calculated, which in 
turn can then be used to calculate the statistical 
weights of chain conformations. The statistical 
weight of a chain in a particular conformation 
consists of two contributions: the chain connec- 
tivity and the statistical weights of the individual 
segments in this sequence of layers. As the 
potentials determine the local concentrations and 
the local concentrations in turn affect the poten- 
tials, a self-consistent potential field and the 
corresponding volume fraction profiles for the 
molecules can only be found iteratively. Thus, 
the SCFA method does not, in general, lead to 
analytical solutions but produces a set of equa- 
tions that can be solved by numerical methods 
only. The resulting concentration profiles of all 
types of molecules in the system contain the set 
of conformations for every type of molecule 
which gives the lowest free energy of the system 
in equilibrium with the bulk solution. 

Today many extensions of the original theory 
exist, the polymers that have been treated in- 
cluding grafted polymer chains [20,133], where 
one of the segments of a chain is anchored to a 
solid surface, and copolymers [26,27], where the 
segments in the chain may be of different types. 
A first-order Markov approximation is used in 
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the evaluation of chain statistics of polymers. A 
rotational isomeric state (RIS) scheme (a third- 
order Markov approximation) has been de- 
veloped [28] to reduce chain flexibility and to 
distinguish gauche and trans conformations (see 
later). The RIS scheme is especially useful for 
small chain molecules. 

Adsorption at liquid-liquid boundaries has 
also been studied with the SCFA theory [137]. 
For liquid-liquid systems the relationship be- 
tween the Flory theory and the SCFA theory 
becomes especially clear. The partitioning of a 
solute over two homogeneous bulk phases fol- 
lows from the Flory equations. In the SCFA 
theory the same concentration ratio is found in 
the homogeneous regions of the two liquid 
phases, which is far from the liquid-liquid inter- 
face. The additional contribution of the SCFA 
theory is that the structure of the liquid-liquid 
interface itself is also obtained. In this study we 
shall use the RIS scheme for grafted chains. This 
requires a straightforward modification of the 
original RIS scheme because of the fixed orienta- 
tion of the first segment of the attached chain. 
Moreover, we have to formulate quantities 
measurable in chromatography in terms of the 
SCFA theory. As we shall also investigate the 
retention behaviour of amphiphilic molecules, 
the SCFA extension to copolymers [26,27] is 
used. Although phase transitions may occur in 
grafted layers of relatively long alkyl chains at 
high densities [138], we restrict ourselves in this 
paper to grafted layers well above the phase 
transition temperature. Gel to liquid phase tran- 
sitions can be modelled if the self-consistent 
anisotropic field theory (SCAF) by Leermakers 
and Scheutjens [139] is employed. In RPLC, 
especially with monomeric bonded phases, the 
coverages are usually too low to generate a 
phase transition. The presence of vacancies can 
be investigated by treating them as another 
component [ 140,141], but in this work we do not 
incorporate this feature. 

6.2. Segment density distribution of molecules 
on a lattke 

The molecules in the system, in our case 
solvent, solute and grafted chains, are located in 

M planar lattice layers parallel to the surface. 
The layers are numbered z = 1, . . . , M. Layer 1 
is situated next to the solid, which fills layers 
z d 0 (see Fig. 1). Each lattice layer contains L 
lattice sites. A lattice site has 2 neighbouring 
sites (coordination number) of which a fraction 
A, is in the same, A_, is in the previous and A, is 
in the next layer. In a hexagonal lattice, for 
example, 2 = 12, A, = 6/12 and A, = A_, = 3/12, 
whereas in a cubic lattice 2 = 6, A,, = 4/6 and 
A, = A_, = l/6. 

A monomer is assumed to occupy one lattice 
site and the type of molecule is denoted by the 
subscript i. A chain molecule, which may consist 
of different segment types, denoted by the 
subscripts x and y totalling ri segments, num- 
bered si = 1, . . . , ri, thus fills ri lattice sites. In 
each layer the concentrations of the different 
segment types are expressed in terms of volume 
fractions (cp). We ignore inhomogeneities within 
a lattice layer and consider only variations in 
concentration perpendicular to the surface. The 
volume fraction in layer z of segments x that 
belong to molecules i is given by r~,~(z), mole- 
cules of type i having a volume fraction cp,(z) in 
layer z and the total volume fraction of segments 
of type x in layer z is being denoted as cp,(z). 

In filling the lattice with segments or mole- 
cules, a most important requirement during the 
generation of conformations of chains, is that the 
volume of the segments be incorporated such 
that each lattice site is not occupied by more 
than one segment at a time: all steps into a 
lattice site already occupied by a segment have 
to be prohibited. An approximate but effective 
solution to this problem is the use of a mean field 
approach, i.e., a volume fraction averaging 
procedure. The assumption is made then that the 
probability of an occupied site at distance z from 
the surface is equal to the average volume 
fraction q(z) of segments at location z. This 
leads to a weighting factor [l - p(z)] for each 
step in or towards layer z. Thus a step into a 
region of high segment density is less probable 
and the generation of conformations is shifted 
towards the required self-avoiding walks. 

In a mixture of different types of molecules 
near a surface a concentration gradient for every 
type of segment is present, as each segment of 
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type x in layer z is subjected to a potential field 
u,(z), where U, is a function of z only based on 
the mean field approximation, and not depen- 
dent on the exact mutual positions of molecules 
and segments. An expression for the potential, 
which can have entropic and energetic origins, 
i.e., a free energy, normalized with respect to 
the bulk solution, can be derived from statistical 
thermodynamics [26], but before going into that 
we shall illustrate the basic procedure with a 
simple example. 

We assume first that the lattice layers parallel 
with the solid wall are equipotential planes for 
the segments. For the reference we take the 
potential far away from the solid wall, i.e., in the 
bulk solution, to be zero. On adopting common 
Boltzmann statistics, segments and molecules 
will distribute themselves in the z direction 
according to the potential field U,(Z) and follow- 
ing a Boltzmann distribution. The weighting 
factor G,(z) = exp[-u,(z)lkT] is a measure of 
the probability of finding a segment x at position 
z in the potential field z&). For example, in the 
bulk, where u(z + m) = ub = 0, and so Gb = 1, 
there is no concentration gradient, as expected. 

In each lattice layer we find for each segment 
or molecular type a potential and a concen- 
tration that are consistent with each other, but as 
indicated before, the potential field is not identi- 
cal for different types of segments or solvent 
molecules because of the differences in energetic 
interactions. The “energy level” of a molecule 
equals the sum of the potentials of all its seg- 
ments, where in general each segment may 
“feel” a different potential. As a result, each 
spatial conformation of a molecule may possess a 
different level of energy, and is consequently 
more probable or less probable. For example, 
taking the case of a chain of three segments, of 
which the first and second are in layer 1, and the 
third is in layer 2, its conformation being (1,1,2), 
has an energy level of u(1,1,2) =2u(l) + u(2), 
and associated Boltzmann weighting factor 
exp[-u(l,l,2)lkT] = G(l)G(l)G(2). 

As the chain molecule in the given conforma- 
tion may be present in many internal contigura- 
tions, the conformation is degenerated. For 
instance, in a polymer melt, polymer chains form 
coil-like structures, based on the number of 

allowed bond angles, say f. For an r-mer then, 
there are lr-’ different conformations which are 
equally probable in the bulk: each conformation 
has a normalized concentration of o,,,,,~ = l/l’-‘. 
In terms of the present lattice model where 
bonds allowed are either parallel or perpendicu- 
lar, an r-mer has Z’-’ possible arrangements for 
its segments, i.e., for our trimer 2*. In boundary 
layers, where chains are deformed by adsorp- 
tion, grafting, etc., some conformations are 
more preferred than others. In a lattice model, 
where each site has 2 nearest neighbouring sites, 
the fractions A, and A, = A_, define the number 
of neighbours in the same and in the two nearest 
layers, respectively, such that A, + A, + A_, = 
A,, + 2A, = 1. Thus, stepping from the first seg- 
ment of our trimer in layer 1, towards segment 2 
in the same layer (parallel bond), is possible only 
through a fraction A,, of all 2 neighbouring 
directions, while the next step (perpendicular) 
towards the second layer is possible through a 
fraction of A, of all directions 2. In all, only a 
fraction of A,A, of all possible internal config- 
urations (2’) belongs to the specific conforma- 
tion (1,1,2). The associated statistical weight of 
this conformation now reads G(1,1,2) = A,A, 
exp[-u(l,l,2)lkT] = A,A,G(l)G(l)G(2). As a 
result, we need to specify the segment weighting 
factors as a function of the layer number (and 
not the ranking number in the chain), in combi- 
nation with the bond weight factors A, and A,, to 
obtain the statistical weight (relative concentra- 
tion) of each conformation via a step-weighted 
walk over the lattice layers. In general, for an 
r-mer in conformation c, with rc(z) being the 
number of segments in layer z and oc being the 
degeneracy: 

where 4’ is the number of parallel bonds in 
conformation c, we have that the statistical 
weight of conformation c is 

(4) 

with obviously C r’(z) = r. The fraction of seg- 
ments of conformation c in layer z is thus f’(z) = 
#(z)lr [for our trimer f”“‘(1) =2/3 and 
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f’,‘,*(2) = l/3]. From this it is now possible to 
obtain the sought volume fraction segment 
profile as 

q(z) = T G' = f”(z)co’ l-j G(Z)"(=) (45) 

For each layer (Le., any z) it is required that 
q(z) = 1 (for one component) or J cp,(z) = 1 
(multi-component). Through an iterative nu- 
merical procedure and for this set of simulta- 
neous equations, it can be found that only one 
combination of weight factors matches the re- 
quirement of unit density in each layer, all this 
provided that G(z), and so the potential u(z), are 
known. Hence the above procedure reflects the 
complete entropic behaviour of a chain molecule 
near a solid wall, including conformational and 
translational contributions. Of course, in the 
present case of grafted chains, polymer chains 
cannot adopt any possible conformation, but are 
restricted by the surface condition that the first 
segment must be in the first layer. Also, transla- 
tional entropy is necessarily absent for attached 
chains. We shall return to this, but first we 
continue to discuss other general aspects of 
interest, including the background of the poten- 
tial function u(z) in the light of the Flory-Hug- 
gins theory. 

6.3. Multi-component systems 

In the multi-component case it is possible to 
treat a solvent molecule (s) as a monomer 
(polymer with one segment and r = 1). We then 
have cp,(z) + qpP(z) = 1, and q,(z) = o,(l) exp 
[-Au,(z)]; because in the bulk exp[-Au,(z)] 
= exp[-u,(z)] = 1, w,(l) represents the volume 
fraction of s in the bulk solution. Recall that 
G(z) is the determining function for the volume 
fraction profile with respect to the bulk fraction: 
detached and monomeric segments would have 
their distribution given by cp,(z) = CJJ pG(z). The 
procedure now covers the segment density pro- 
file generated by conformational entropic contri- 
butions of both the chain polymer and the 
solvent, but for the latter also the translational 
and configurational entropic contributions. 

As in the above the treatment applies to 
athermal solutions only, i.e., for cases where the 

energy of a segment does not depend on the 
local concentration of other segments, we should 
take into account the case of a non-zero mixing 
energy, urnlx, where energetic interactions be- 
tween segments take place. Then, in addition to 
the Boltzmann factor as obtained above, in each 
layer the ratio of weighting factors for segments s 
and p should equal the Boltzmann factor 
exp{ -[u,(z) - uJz)]lkT}, which takes into ac- 
count the energy differences of segments s and p 
in each layer with respect to the bulk solution. 
This energy difference can be a difference in 
interaction energy with the solid wall (adsorption 
or bonding in layer l), or a difference in mutual 
interactions, which can be described for example 
by a Flory-Huggins parameter. Thus, in the 
latter case the Boltzmann factor occurs because 
most compounds feel at home best in their own 
company. In fact, a polymer segment competes 
with a solvent molecule for a lattice site, where 
according to FH the additional interaction 
energy for a polymer segment, when transferred 
from pure polymer ((p, = 0) to pure solvent (cp, = 
l), equals X,,kT, identical with the energy for 
pure solvent being transferred to pure polymer: 
x,, = ,Y, (by definition x,, = 0). In this process 2 
p-s contacts are formed and +Z p-p contacts 
and +Z S-S contacts are broken. In general, 
transfer of one segment p from a position z1 to 
z2, with associated solvent volume fractions 
pS(z), is associated with an energy change of 

x,,lul,(z,) - dz,)lkT and, by analogy, for one 
solvent molecule, xP,[~Jzl) - q,(z2)]kT. 

In the present case where segments are trans- 
ferred between layer z and the bulk solution, the 
mixing energy for segment p would be 
,Q,,[cP,(z) - cp,b]kT, but because of the concen- 
tration gradient we have to consider the segment 
contacts with the nearest Z neighbours in three 
lattice layers together: a fraction h, in layer z, 
and fractions A, = A_, in layers z + 1 and z - 1, 
respectively. This results in the following inter- 
action energies of the segments: 

u;‘“(z) =xJ(cp,(z)) - rp,blkT; 

d=(z) = xJb&)) - cp;lkT 
(W 

where ((pi(z)) is the average contact fraction of 
segments around a site at z: 
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(cP,(‘)) = h-l9i(z - l) + hlJqPi(z) + hl%,(z + ‘) 

(47) 

In this way, using the described mean-field 
approximation, all interactions in a layer are 
smeared out and the sought segment density 
profiles are a function of z only. Recall that in 
the bulk solution the additional interaction 
energy equals zero as (&z)) = C&Z) = cpp. 

The expressions for ~~‘~(2) in the case of chain 
molecules consisting of more than one type of 
segment, say x and y, are easily generalized as 

(48) 

where the summation extends over all segment 
types X, y, . . . . Segment type x itself may also 
be included because by definition x,, = 0. Al- 
though only valid for layers z > 1 (because of the 
assumed mean-field averaging), interactions with 
the solid wall, located in layer z = 0 with seg- 
ment type S, can also be included. This can be 
seen illustrated most clearly for a more “soft” 
adsorptive interaction with the wall with ad- 
sorption energy per segment u;dS. As the contact 
with the surface involves (h,Z) p-S contacts, the 
energy involved is uidS = A,,yp,kT. In general, a 
segment x in the first layer, being also in contact 
with surface sites S, experiences the total inter- 
action potential: 

u;‘( 1) = UZd”( 1) + @“( 1) 

= 4Xx&T + ,c x,,[byo,(l)) - cp,blkT 
(49) 

If we now take the step to consider S as a 
separate component of the system, with ~~(0) = 
1 and (ps(z ~0) = ‘pi =O, it is seen that the 
adsorption term in eqn. 49 can be written as 
Use” =xXs[(‘ps(z)) - cpk.kT, and it can be in- 
cluded in the summation for Us to obtain the 
total interaction potential for all 2: 

u:“‘(z) = ,c X&P&)) - rp,blkT (50) 

The case of monomer (m) adsorption is a 
particularly simple and illustrative example in 
this context. For an athermal system of homo- 
polymers (one segment type), xXY = xyY = 0 and 

up’ = u;‘(z) = u’(z), except for the first layer, 
where us( 1) = u’( 1) + uzds and u,J 1) = u’( 1) + 
~2’. Hence with P= cpilcpp, the well known 
Langmuir equation is obtained, which for small 
P transforms into Henry’s law: q,,,(l) = k,P. 
After this excursion into adsorption we could 
treat the case of polymer adsorption as the next 
step, but for that we refer to the pertinent 
literature and proceed with terminally attached 
chains directly. 

6.4. The potential field 

The entropic change of the polymer molecules 
has already been taken into account in the 
earlier lattice-filling and purely (conformational 
and for the solvent also translational) entropic 
procedure, which was based on the generation of 
a self-consistent potential field, that can formally 
be described by u’(z) and is independent of the 
type of segment. Evers et al. [26] provided 
explicit expressions for the formal free energy 
U’(Z) associated with this conformational pro- 
cess. The total potential, being the sum of all 
possible potentials, becomes 

U,(Z) = U’(Z) I- U;‘(z) (51) 

The potentials are defined with respect to the 
supposedly infinitely large and homogeneous 
bulk solution (u’~ = up = 0), u’(z) being indepen- 
dent of the type of segments, and the mixing and 
adsorption contribution U:‘(Z) accounting for 
segment interactions of type X. The general 
expression for the associated statistical weight of 
a free segment of type x in layer z with respect 
to the bulk solution is now known from U,(Z): 

G,(z) = exp[-u,(z)lkT] (52) 

For the present purposes, it suffices to realise 
that the potential u’(z) originates from local 
hard-core interaction potentials in layer z (with 
respect to the bulk solution) and adjusts itself 
self-consistently such that the free energy is 
minimized and the boundary condition of unit 
space filling (i.e., constant segment density up to 
the interface) in each layer z is obeyed: 
iC vi(z) = 1. Indeed, if there is no mixing energy, 

all xXY are zero, e.g., in a polymer melt of one 
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segment type, and only u’(z) is left to ensure 
complete occupancy of the lattice. In the poly- 
mer melt case it prevents the depletion of the 
surface region which would occur by entropic 
restrictions. 

Physically, with increasing segment density, 
this hard-core potential switches from --03 to +a 
at the moment that J q,.(z) exceeds 1. Equilib- 
rium values of u’(z) depend strongly on the 
conditions in the system, but are of the order of 
SkT. For example, for terminally attached 
chains, the first segments are constrained to be in 
layer 1, being anchored [u’(z) = --ml in layer 
z = 0. Similar “hard core” potentials also occur 
in other theories; see, e.g., refs. 8,9 and 142- 
147. Thus, Marqusee and Dill [8] used the 
parameter In q(z) for the same physical phenom- 
enon as that for u’(z). We feel, however, that 
they did not correctly make use of this; see our 
earlier discussion [ 161. 

The above being formal, we may obtain some 
feeling for the all-important potential field by the 
application of the well known FH theory, as has 
been done by several workers [33,133]. The 
segment potential field u,,(z), being a chemical 
potential and as such the derivative of the free 
energy per segment with respect to the segment 
concentration in layer z, up = (dgldq)kT, con- 
tains, apart from the above mixing energy term, 
also entropic contributions. One way to account 
for the total of energetic and entropic interac- 
tions included in this potential field is realized by 
application of the full FH theory to find the 
change in free energy when a solvent molecule in 
layer z is exchanged with a single polymer 
segment in the bulk solution. The free energy of 
mixing for the grafted polymer segments using 
the FH theory with omission of the term repre- 
senting the absent translational entropy contribu- 
tion of the attached polymer chain per segment 
reads, according to eqn. 15, 

g[cp,W lkT = cp, In cp, + x,,cp, 

and appropriate partial differentiation gives the 
(chemical) segment potential as 

uF(z)lkT = -{In ‘p, + 2xJl - C&Z)]} 

= -{ln ]I - qAz)l + 2x,,(p,W~ (53) 

This result can also be obtained more intuitively 
by summing the appropriate changes comprised 
in the following contributions: 

(i) -x,,[(~Jz)) - cpi]kT, resulting from loss 
of interaction energy by removal of a solvent 
molecule from layer z plus the gain in energy 
from interaction of this solvent molecule with the 
bulk solution; recall that for fully grafted chains, 
there is in fact no free polymer in the bulk, i.e., 
cp;=o; 

(ii) +x,,[(cp,(z)) - cp,b]kT, resulting from the 
gain in interaction energy by the insertion of the 
segment in layer z minus the loss in interaction 
energy of this segment due to its removal from 
the bulk solution; 

(iii) -[In C&Z) + In cp,b]kT, resulting from the 
change in the translational entrop 

I? 
of the solvent 

molecule, eqn. 15. As (pt = 1 - ‘p,, and (cp,(z)) = 
(1 - am) and in fact ‘pi = 0 from (i) above, 
CJY,~ = 1. Thus, summing (i), (ii) and (iii), we 
arrive again at the above expression for u,(z). It 
is stressed that this expression is valid only if no 
other components such as solutes are present. 
For later use, we retain the full expression 
including cpi and ‘pp and thus obtain for the 
energy of mixing the sum of the above contribu- 
tions (i)-(iii): 

u;‘(z)lkT = x,,[( 1 - 2qb(z)) - 1 + 2~$] 

- In [l - C+(Z)] + In [l - rpi] (54) 

The earlier expression eqn. 53 for the interaction 
energy can also be found as resulting from eqn. 
54, both equations being special cases of the 
shorter but general eqn. 50. Eqns. 53 and 54 
show that two types of terms arise, those only in 
(p(z), independent of segment type and entropic 
in origin, together with those which are segment 
type dependent because of energetic interac- 
tions. 

6.5. The volume fraction profile 

Now that the underlying potentials have been 
discussed, the statistical weight G,(z) of a free 
segment of type x in layer z with respect to the 
bulk solution is calculated from u,(z); for each 
type of molecule i we then have 
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Gz,i(z) = exP{-[u,,i(z)lWl 

= exp{ -[u’(z) + z&?:(z)]} (55) 

where u’(z) is assumed to be the same for all 
compounds i. To calculate the volume fractions 
of chain molecules from the statistical weights, 
the connectivity of the segments must be taken 
into account: in a chain the distribution of a 
segment is of course also affected by that of all 
the other segments in the same molecule and 
may depend on its position in the chain. To this 
end two different approaches can be followed. 
The first is after Scheutjens and Fleer [25], who 
developed a model based on step-weighted ran- 
dom walk statistics, that does not forbid back- 
folding of segment s + 1 on segment s - 1 (first- 
order Markov chains). This scheme is useful for 
studying flexible polymers, where one statistical 
segment corresponds to 2-5 monomeric units 
[148]. 

To gain detailed information on the conforma- 
tional statistics of small chain molecules, for 
instance the molecules used for surface modi- 
fication in RPLC and even smaller ones in 
solutes, every chemical group, such as a CH, 
unit, should be treated as one segment. Obvious- 
ly, this definition of segments will lead to an 
overestimation of the flexibility if use is made of 
first-order Markov statistics. To overcome this 
problem a second approach, developed by Leer- 
makers and Scheutjens [28] and based on a 
rotational isomeric state (RIS) scheme, is used. 
This approach leads to reduced flexibility, 
because backfolding is forbidden for five sub- 
sequent segments. Moreover, the energy differ- 
ence between gauche and tram configurations 
can be incorporated. 

A detailed derivation of the SCFA theory for 
first-order Markov statistics has recently been 
given by Evers et al. [26]. The relative occur- 
rence of each conformation must be obtained 
from adapted statistical weights, G(z,s), taking 
into account that the segments are connected to 
each other. G(z,s) equals G,(z) if segment s is of 
type x and in layer z. For a short discussion on 
obtaining G values, see our earlier publication 
[16], section “First-Order Markov Chains”. A 
chain end segment distribution function Gi(z,sl) 

is introduced for a chain part of molecule i 
consisting of the segments 1, . . . , s. This dis- 
tribution function gives the average statistical 
weight of all possible walks along a chain of s 
segments (i.e., all conformations), starting from 
segment 1 (being located anywhere in the lattice) 
and ending after s - 1 steps at segment s in layer 
z. The subscript 1 in si indicates that the walk 
along the chain starts at segment 1 [28]. For 
example, for a trimer with s = 1 in z = 1 and 
s = 3 free, G(l,l,) = G(l,l,l) + G(1,1,2) + 
G(1,2,1) + G(1,2,2) + G(1,2,3), i.e., five con- 
formations contribute. However, for instance, in 
G(3,1,) there are nine contributing terms, and 
so nine conformations. 

In the general case of s-mers, if segment s is in 
layer z, segment s - 1 must be located in one of 
the layers z - 1, z or z + 1. This implies that 
Gi(z,sl) is proportional to the weighted average 
of statistical weights of (s - 1)-mers of which the 
last segment is in one of the layers z - 1, z or 
z + 1. As, further, segment s in layer z contri- 
butes a factor Gi(z,s), it is seen that a general 
recurrence relationship holds: 

Gi(z~l) = (Gi(r,s;))Gi(rJ) 

(Gi(Z,s;)) = [A_,Gi(z - 1~;) + &Gi(rJ;) (56) 

+ h,Gi(z + l,s;)] 

Here s’ = s - 1, i.e., the segment to which s is 
connected. Note that subscript 1 refers to the 
bond 1 with which the rest of the chain is 
connected. Through this relationship the end- 
point distributions can be directly computed 
from G(z,s) and hence from the potential field 
z&J). 

It is easiest to start the recurrence sequence 
with monomers, each application of the s-mer 
eqn. 56 extending the chain by one segment 
and by one bond. So we start with [26,133] 
G,(z,l,) = G,(z), the statistical weight of a free 
segment s (monomer) in layer z, which equals 
G,(z) as defined by eqn. 52, if segment s is of 
type x. Extending the chain by one segment 
[taking into account the segmental weighting 
factors G(z - l), G(z) and G(z + l)] and by one 
bond (weighting factors A_,, A,, and A,) finally 
results in the building of the required chain of an 
r-mer, if starting point (1) and end-point (r) are 
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free (i.e., not in layer 1). The sought volume 
fraction cp,(z,s) for segments s in layer 2 of 
molecules i is found to be 

cP,(z,S) = CiG,(z,s,)G,(z,s,)/G,(z,s) (57) 

Ci is a normalization constant that can be de- 
rived from given boundary constraints. For open 
systems and chains in equilibrium with the bulk, 
we may express Ci in terms of the bulk concen- 
tration VP, because in the bulk solution cp(z) 
necessarily equals ‘pp. As u(z) = 0 and all G 
values are 1 in the bulk, from eqn. 10 it follows 
that q+(z) = a: = ,C 1 = riCi, i.e., 

ci = ‘Ppri (58) 

Note that for monomers, +(z)lcpp = G(z), as 
found before. 

This expression is not general and is not to be 
used for grafted chains, where ‘pz = 0. Here and 
also in the case of adsorption of polymers in a 
closed system where the bulk concentration is 
not constant, Ci follows from the knowledge of 
the total amount of polymer present. If we 
introduce the total amount of molecule i as the 
sum of q(z) over all layers z: 

(59) 

then 13 is expressed in equivalent monolayers or 
number of segments per site, i.e., if the number 
of molecules of type i with ri segments is ni, 
0, = n,r,lL. We finally find [16,26] 

Ci = (e,lr,) . .5 Gi(z,rl) 
1 

(@I 

where the second equality is valid for terminally 
attached or grafted chains, since the bulk solu- 
tion volume fraction of anchored chains is zero 
and the grafting density u = Bglrg determines the 
normalization constant. 

6.6. Rotational isomeric state scheme 

So far chain conformations were generated by 
a Markov-type approximation, which allows 

chains to intersect with themselves or other 
molecules in the lattice. The main advantage of 
the procedure is the possibility of finding the 
conformations from handy recurrence relation- 
ships. However, the stereochemical structure 
(steric hindrance) of many polymeric molecules 
requires that each rotatable skeletal bond is 
almost restricted to one of a small number of 
discrete rotational states such that conformations 
with lower energy (U) are preferred by the 
Boltzmann factor exp[ - UIKT). The conforma- 
tion of higher alkanes, for instance, can be 
represented as a random sequence of trans (t) 
and gauche (g) groupings, the relative frequency 
of these forms being determined by their 
Boltzmann factors. The trans form (“staggered” 
position of neighbouring building blocks e.g., for 
CH, groups in ethane with H atoms farthest 
apart) is energetically much more preferred than 
the cis form (“eclipsed” position where the 
building block is rotated with respect to the trans 
form over d3 radians such that for ethane the H 
atoms are all in line) [95,96]. In most chain 
molecules there are three preferred “staggered” 
positions located at rotational angles of 0 and 
+2~/3, where 0 corresponds with trans (t) and 
+27rJ3 with gauche groupings ( gc and g- or 
sometimes g and g’, respectively). In the gauche 
conformations of ethane, e.g., the energy 
minima are slightly higher (ca. kT or 800 cal; 1 
Cal= 4.14 J) than that in the trans conformation, 
where methyl groups are farthest apart and do 
not interfere. Hence t conformations prevail but 
g conformations are still appreciable, even en- 
hanced by their degeneracy of 2. The conforma- 
tions of higher alkanes can thus be represented 
as a more or less random sequence of t, g’ and 
g- groupings, taking into account the restriction 
that if a sequence g+g- is attempted a severe 
overlap of the first and the fifth methylene group 
occurs (‘ ‘pentane effect”). 

In the rotational isomeric state (RIS) approxi- 
mation [loll, each molecule or bond is treated as 
occurring in one or another of several of these 
three rotational states, rather than using the 
Boltzmann statistics for the complete U(q) func- 
tion where cp is the rotational angle. Fluctuations 
about the minima are ignored, on the assump- 
tion that these fluctuations, being of random 
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sign, will be mutually compensatory. In order to 
take into account the interdependence of rota- 
tional states, statistical weights are assigned to 
pairs of conformations about adjoining skeletal 
bonds or, in other words, the third-order Mar- 
kov process used in RIS to generate the various 
conformations has a “memory” of the random 
walk type of two bonds long. A third bond of 
course, can only have three different directions, 
which form tram or gauche configurations with 
its two predecessors. 

The RIS scheme as developed by Leermakers 
and Scheutjens [28] is based on a tetrahedral 
(diamond) lattice with 2 = 4, which is well suited 
to accommodate the above chain configurations. 
The extension of the RIS scheme to grafted 
chains is straightforward and has been described 
elsewhere [16]. It should be noted that Dill and 
Cantor [146] used different but similar recur- 
rence relationships to generate the possible con- 
formations on a lattice for micellar aggregates. 
However, they fixed the head groups in particu- 
lar layers and allowed all segments only to be in 
the same layer or in layers closer to the centre of 
the aggregates. Moreover, no solvent molecules 
or head groups were allowed in the tail region, 
therefore ignoring energetic interactions. 

7. CHROMATOGRAPHIC RETENTION 

7.1. The capacity factor 

In chromatographic experiments the observed 
retention, expressed as the capacity factor, k: , is 
described by eqn. 3. In this relationship Kf, the 
concentration-based distribution coefficient of 
solute i between the stationary and the mobile 
phase, is directly comparable with the liquid- 
liquid partition coefficient, KicLLJ, as found with 
the earlier solubility parameter approach. Using 
the SCFA theory, we obtain a volume fraction 
profile, rather than a concentration profile, and 
the distribution coefficient in the SCFA theory is 
therefore more conveniently expressed in terms 
of average volume fractions, which are propor- 
tional to concentrations: 

(61) 
From this it follows that the average volume 

fraction, @r, in each phase is required. The 
average bulk volume fraction of solute in the 
mobile phase, Cp,,, can be approximated by the 
bulk solution fraction @p, whereas the average 
volume fraction in the stationary phase is calcu- 
lated from the amount retained per surface site, 
O,,, and the volume of the stationary phase, V,: 

(62) 

where V, is the volume of a lattice layer and 
S, = V,lV, the thickness of the stationary phase, 
expressed in number of layers. The amount Cp,, in 
(or at) the stationary phase is calculated from the 
total amount of i minus the amount in the mobile 
phase: 

cp,, = Oi - [M - (V,/V,)]q; (63) 

The thickness of the stationary phase, S,, has 
to be defined more precisely, because the bound- 
ary between mobile and stationary phase is not 
sharp. Lyklema [147] advocated the use of the 
Gibbs dividing plane for defining the extent of 
regions where phases have their bulk properties, 
but here, taking into consideration the chro- 
matographic migration process, we propose to 
take for it the hydrodynamic layer thickness $ = 
6,. This quantity is an equilibrium property of 
the grafted layer. The equation for the hydro- 
dynamic layer thickness in terms of the SCFA 
theory has been given by Scheutjens et al. [149] 
(see the next section). As a result, we write 

k; = K;(V,IV,) = K;&,/(M -S,) = k,l(M - S,,) 

(64) 

where ki is an alternative capacity factor, equal 
to KFS,,. According to eqns. 61 and 62, k, is 
obtained from the numerical results as 

ki = Kfc$, = f3,,l&,, (65) 

The volume of the mobile phase is usually 
much larger than that of the stationary phase, 
therefore the relative changes in the volume of 
the mobile phase are small and M-S, =M is 
approximately constant. Hence the only differ- 
ence between ki and ki is the nearly constant 
number of layers M - S,. As results are often 
represented graphically in terms of the logarithm 
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of the capacity factor (as a function of the 
parameters under study), only the intercept 
differs if we plot In ki instead of In ki . 

7.2. The hydrodynamic layer thickness, 6, 

As chromatographic techniques are dynamic 
and involve flow phenomena, it is of special 
interest to obtain an insight into the behaviour of 
polymer brushes when these are subjected to 
shear forces from flow past the grafted surface. 
There is little doubt that for isolated chains the 
latter are squeezed down against the surface, the 
more strongly as the shear rate becomes higher. 
For a recent review supported by Brownian 
dynamics simulations, see Pamas and Cohen 
[150]. For the relatively short chains of interest 
in RPLC, it appears that shear rates in excess of 
10 s-l are required to observe any reduction in 
extension of the chain, but at shear rates of 100 
S -’ , typical of modem LC columns, drastic 
effects are predicted. 

This situation is entirely different, however, 
for the case of polymer brushes, where the 
chains “support” each other to obtain the highly 
stretched brushes discussed before. Because of 
the expected parabolic density profiles, one 
might expect that flow penetration will be most 
prominent in the outer bush extremity and 
vanish somewhere inside the chain phase, where 
the higher polymer segment density reduces the 
permeability (note that this would be different in 
the step function ansatz for the segment density, 
where the permeability would be constant 
throughout the grafted layer). Based on the 
(Debye-)Brinkman equation [151], an empirical 
modification of Darcy’s law for flow in a porous 
medium, assigning a friction factor to each 
polymer segment and assuming a linear wedge- 
like segment density profile at the fringe of the 
brush, Milner [152] recently obtained for simple 
shear flow (no pressure gradient and a linear 
velocity profile) a first guess of the hydrodynamic 
penetration depth (i.e., the depth in the brush as 
seen from the outside where the velocity van- 
ishes). The result justifies the view that hydro- 
dynamic penetration of a linear velocity profile is 
only important in the outer extremity, but sol- 

vent flow appears in surprisingly deep layers 
(roughly half the brush height). 

More quantitative results can be based on the 
Scheutjens-Fleer theory, as has been shown by 
Cohen Stuart et al. [153] and Scheutjens et al. 
[149]. Here the segment density profile (for 
adsorbed polymer chains) is found as illustrated 
above, and the use of the relevant hydrodynamic 
equation according to Brinkman, again assigning 
permeability or friction factors to each layer, 
yielding the relationship between pressure drop 
and flow. The appropriate hydrodynamic layer 
thickness easily follows from that; for instance, 
for the flow through a pore of radius R, the value 
of 6, may be defined as resulting from the ratio 
of volumetric flow rates Q/Q0 in the cases of 
polymer present at the wall of the pore (Q) and 
in the absence of polymer (Q”): 

l&/R = 1 - (Q/Q~)~'~ 

Usually, polymeric layers in flow channels are 
very thin with respect to the width of the 
channel, where moreover flow profiles (without 
polymer present) are essentially linear close to 
the channel walls. Hence the definition of S, may 
be safely chosen on the basis of a two- rather 
than a three-dimensional system, as is the case, 
for example, in slit flow between flat plates. For 
the latter case the (Debye-)Brinkman equation 
relates pressure drop and linear flow velocity 
u( [) (4 being the perpendicular coordinate to 
the wall) along the flat plates in the x-direction 
as 

-dpldx = ~[(d*uld~*) - u/k*] (67) 

where the left-hand side is the transversal pres- 
sure gradient in the x-direction driving the flow 
parallel to the wall, 77 the solvent viscosity and 
the term linear in u represents the friction with 
k2 being the permeability factor (with dimension 
(length)*, e.g., for a capillary with radius R, 
k* = R* /8 according to Poiseuille). 

We take the simplest case of simple shear flow 
between plates a distance M apart [in terms of 
our lattice model, each lattice step (z) being of 
length a, so 4’ = za] such that the grafted layer is 
at the fixed wall (adjoining z = 1) and the other 
plate (adjacent to z = M) moves with a constant 
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and maximum velocity Us, we obtain a linear 
velocity profile u(z) = (z/M)uM, and a zero pres- 
sure gradient, and so 

d*u/d.z* - u/q*(z) = 0; q2(z) = k*(z)la* (68) 

For the pe~eability we use the semi-empi~cal 
expression after Mijnlieff et al. [154], q* = ch’ps/ 
(1 - rp,), where cp, is the solvent volume fraction 
present. The instant ch is of the order of unity 
[153]. 

In our case of grafted (or adsorbed) layers the 
situation is complicated since the solvent content 
of each layer varies by virtue of the concen- 
tration (volume) profile of polymer segments as 
discussed, and so ‘p, and q* are fun~ions of z. As 
only grafted (or adsorbed) chains contribute to 
the permeability, it is better to express q2(z) in 
terms of @(z) and write q*(z) =c,,[l- rp’(z)]f 
~~(2). Note that for (~~(2) = 1, q*(z) = 0 (i.e., no 
permeability is left in a completely filled grafted 
lattice, as should be). 

Now, with these values for q2(z) the reduced 
Brinkman equation can be solved for each layer 
for u(z) and, through a numerical iteration 
procedure, S, can be obtained from the distance 
the plates must be moved towards each other 
[153], such that the flows Q and Q” are equal. 
Scheutjens et al. [149] pointed out that an 
analytical procedure is equaUy possible. This 
procedure is based on the above analytical solu- 
tion of the Brinkman equation per layer and 
defining the ratio of velocity u(z) and velocity 
gradient u’(z) = duldz as a(z) = u(z)/u’(z). It 
turns out that a single recurrence relationship is 
obtained with hyperbolic functions of the form 
tanh[l/q(z)], and ~ntaining only a(z), a(z - 1) 
and q*(z), starting with a(0) = 0. For layers close 
to the surface, with relativeiy high qo-values, 
q*(z) is small and CT(Z) increases only very 
slightly per layer. This implies that u(z) is virtual- 
ly zero near the solid surface, as expected. 

At the other extreme, far out in the bulk 
solvent and in the absence of (grafted) polymer, 
q*(t)- 03 and the recurrence relationship re- 
duces simply to a(z) = (.y(z - 1) + 1, i.e., each 
layer behaves the same, the linear velocity 
profile u(z) = (zlM)u, is preserved and a(z) = z, 
as should be. Going from the solid surface 
towards the bulk solvent region, because of the 
hyperbolic tanh functions, major changes in (w(z) 

via changes in q’(z) occur only where cp*(z) 
drops below say 0.01, i.e., in the very fringes of 
the chain phase. Obviously the tail ends in the 
outer peripheries of the brush layer screen the 
liquid flow from the inner parts of the layer very 
effectively. The analogous situation of limited 
draining of free polymer coils in solution is well 
known (see, e.g., ref. 95). Therefore, adsorbed 
or grafted polymer layers at interfaces produce 
more or less immobile solvent layers with an 
effective thickness that is largely determined by 
the tail extension [153,155]. Indeed, hydro- 
dynamic layer thicknesses are always larger than 
those determined by other methods such as 
ellipsomet~ and SANS (for a review, see ref. 
155). 

As a consequence, S, is virtually independent 
of all inner properties such as the difference 
between adsorption and grafting, and also in- 
dependent of flow properties such as the velocity 
itself. Indeed, a(z) is not de 

se 
ndent on velocity, 

as it is only a function of q (z), and represents 
the number of layers over which a velocity 
difference du(z) Z 0 becomes effective. Owing to 
the polymer present in the grafted layer, the 
velocity profile is only linear at large z and is 
shifted in comparison with the absence of poly- 
mer over a distance 8,: 

&,=M-o(M) (69) 

Thus, in eqn. 64 the term M - 6, may be 
replaced by a(M), and hence 

=&/a(M) (70) 

7.3. Choice of parameters 

As indicated in the Introduction, we shall start 
by considering simple systems composed of a 
surface with a grafted layer of chain molecules, a 
monomeric solvent and linear flexible solutes. 
When we properly understand these simple 
systems, we can study more complicated situa- 
tions, such as mixed solvents. In RPLC the 
solvent is polar, whereas the grafted chains are 
mainly aliphatic. The interaction between the 
mobile and the stationary phase is therefore 
unfavourable, and a high positive value for x 
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between segments of the grafted chains, G, and 
the monomeric solvent, 0, should be chosen. 
Typically, we use xoo = 2 and the effect of xoo 
on the properties of the grafted layer will be 
studied by varying xGo between 0 and 2. If the 
mobile phase is water and the grafted chains are 
aliphatic, we take xoo = 2, a value also used in 
the calculations on non-ionic surfactants [ 1561. 
To limit the number of different segment types, 
we ignore end effects, such as the fact that a 
terminal CH, group is more hydrophobic than a 
CH, group in an alkane chain [157]. 

Apart from the solvent-grafted chain seg- 
ments interaction, we also have to specify sol- 
ute-solvent and solute-grafted chain segment 
interactions. The solute may consist of one or 
more segments which can be of different types. 
In practical systems, the solubility of the solute 
in the mobile phase is poor, and therefore 
positive x values are chosen for the interaction 
between at least one type of solute segment 
(referred to as the aliphatic segments, type A) 
and the solvent. The interaction parameter be- 
tween these A segments and the aliphatic seg- 
ments of the grafted chains is always taken to be 
zero, xAG = 0, and we shall vary both xoo and 
xAo between 0 and 2. Potentially, high values of 
xAo may lead to separation of a solution into two 
phases, one solute-rich and the other solute- 
poor. Using the extended Flory-Huggins equa- 
tions [27] we ascertained that phase separation 
does not occur at the low bulk volume fractions 
of solute considered in this study. 

The interaction of the hydrophilic segments of 
the solute, if present, with the grafted chains is 
unfavourable and consequently positive x-values 
are chosen for the interaction between the hy- 
drophilic segments and the segments of the 
grafted chains. To keep the number of variable 
parameters small, we have only considered the 
case where the hydrophilic segments, H, of the 
solute are of the same type as the solvent 
molecules, i.e., xxH = xX0 and xHo = 0. 

Concerning the solid surface, a value of zero 
was assigned to all interaction parameters involv- 
ing the surface (S). This leads to some adsorp- 
tion of grafted chains on the surface if xoo is 
positive, because unfavourable contacts between 
aliphatic segments and the solvent can be re- 
placed by more favourable contacts with the 

surface. The surface densities chosen in the 
calculations correspond to values commonly re- 
ported for practical RPLC systems, which are in 
the range 2-4 pmol/m2. In the model we use the 
surface coverage, g, which is the number of 
grafted molecules per surface site. At the theo- 
retical maximum surface coverage (a = 1) the 
grafted chains are aligned in an all-truns con- 
formation. The density of silanol groups on a 
silica surface is between 7 and 9.5 pmol/m2 [l], 
which results in about the same cross-sectional 
area as the CH, units. Using 9 pmol/m2 for the 
maximum surface density, a surface density 
between 2 and 4 pmol/m2 corresponds to a 
surface coverage between 0.22 and 0.44. In most 
calculations a typical value of m = 0.3 is chosen. 

7.4. Results for the grafted layer 

Here we consider terminally attached G,, 
chains consisting of 18 segments of type G, at a 
typical surface coverage u = 0.3. We start with a 
solvent consisting of monomers of type 0, and 
Fig. 2 shows volume fraction profiles for three 
solvent qualities. The volume fraction profiles 
are extrapolated from layer 1 to layer 0 where 
(T = 0.3. It appears that in an athermal solvent, 
i.e., xGO = 0, the volume fraction profile is 
dominated by two entropic factors: the con- 
formational entropy of the grafted chains and the 
entropy of mixing in every lattice layer. As a 
result, the chains protrude far into the solution 
as expected: the Flory radius in a good solvent 
would amount to (18)3’5 = 5.66 (layer numbers), 
whereas the chain for xoo = 0 extends to about 
z = 15-18, depending on the type of statistics 
(Markov or RIS) used. This confirms the earlier 
qualitative discussion on the formation of highly 
extended layers (“brushes”) in grafted layers. 
The profiles do show a nearly constant density 
region (in accordance with the step function 
ansatz of De Gennes) only for (T > 0.3 and more 
constant with increasing xc0 values (Fig. 5 in 
ref. 16). 

At these larger values of xoo, GG interactions 
are preferred to GO interactions and the grafted 
layer becomes more compressed and the number 
of contacts between segments of the grafted 
chains and the solvent molecules decreases. For 
xoo = 2 the grafted layer is strongly compressed, 
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bonds. If xoo = 2, however, the profiles with and 
without the use of the RIS scheme are almost 
identical. At such high xoo values a collapse of 
the grafted chains occurs; minimization of the 
number of contacts between segments of the 
grafted chains and solvent molecules dominates 
the volume fraction profile. 
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Generalizing for the moment the above results 
by considering the xoo parameter as an overall 
characteristic of the solvent with respect to the 
grafted layer (independent of the precise molec- 
ular structure or composition of the solvent), we 
may say that in good solvents the grafted layer is 
extended, whereas in poor solvents the grafted 
layer collapses. Concluding, with and without 
the use of the RIS scheme, we find the same 
trends as observed by Martire and Boehm [17]. 
The difference between the two types of statistics 
we used is small at the high values of the 
interaction parameters that are relevant in 
RPLC. Nevertheless, we prefer the use of the 
more exact RIS scheme. 

Fig. 2. Volume fraction profiles of terminally attached G,, 
chains for xGo = 0, 1 and 2. (T = 0.3. (a) Fist-order Markov 
chains; (b) RI.5 chains (third-order Markov chains). From 
ref. 16. 

the grafted chains have formed a separate phase 
and the boundary region with the solvent is only 
a few layers wide. This last situation is typical of 
RPLC systems. 

In all cases a maximum in the segment density 
distribution is found, occurring for entropic 
reasons, confirming the results by Cosgrove et al. 
[20], who used Arst-order Markov statistics with 
SCFA theory only and longer chains, resulting in 
more pronounced maxima. At positive xoo val- 
ues, the grafted chains adsorb slightly on the 
surface, because contacts with the surface are 
preferred to contacts with the solvent. The 
shapes of the profiles that are obtained for xoo = 
1 and xoo = 2 are typical of weakly adsorbing 
grafted chains. For xoo = 0 and xoo = 1 the 
volume fraction profiles calculated with the use 
of the RIS scheme differ from the volume 
fraction profiles calculated with first-order Mar- 
kov statistics. The “RIS chains” are more 
stretched, because backfolding is forbidden and 
truns bonds are energetically preferred to gauche 

If XGO = 0, the chains extend far into the 
solution for all coverages, and when o increases 
the volume fractions become higher and the 
slopes of the curves near layer 18 become 
steeper. The hypothetical limiting coverage, o = 
1, leads to a block profile of the grafted chains: 
the volume fraction drops from 1 in layer 18 to 0 
in layer 19. For xGo = 2 the layer collapses and 
the maximum value of the volume fraction (ca. 
1) depends only weakly on the surface coverage. 
In contrast to the volume fraction profiles for 
xGo = 0, the volume fraction profiles in the 
boundary region have the same shape for all 
coverages, except for (T = 1, which must lead to 
an exact block profile. We conclude that the high 
value of xGo leads to condensed grafted layers 
for all coverages, in agreement with experimen- 
tal findings and the theory of Martire and Boehm 

1171. 
The effect of the chain length of the terminally 

attached chains on the volume fraction profiles is 
such that for all xGo values longer chains always 
form thicker layers. For high xoo the layers 
collapse into layers with high segment density 
(0.850.95), where the shape of the volume 
fraction profiles in the thin boundary region 
between grafted chains and solvent are more or 
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less parallel and independent of the chain length 
(see Fig. 6 in ref. 16). The volume fraction 
profile of grafted chains is largely determined by 
the unfavourable chain-solvent interactions, in 
contrast to the volume fraction profile at xoo = 
0, where conformational aspects dominate and 
chains protrude into solution as far as their 
number of segments allow. In these instances the 
shape of the profiles is far from block-like and, 
qualitatively, agrees much better with the ex- 
pected parabolic profiles (except at the extremes 
for z = O-2 and z large). 

We conclude that for the case of practical 
relevance, i.e., high xoo values, the grafted layer 
is strongly collapsed. The conformational en- 
tropy and the energetically favoured formation 
of truns bonds cannot prevent the formation of a 
separate phase with a thin interfacial region with 
the mobile phase. For the relatively low-molecu- 
lar-mass grafted chains used here, experimental 
verification of the profiles presented above is 
difficult. For grafted high-molecular-mass poly- 
mer layers a maximum in the volume fraction 
profile has indeed been found using neutron 
scattering [155,158] and it also agrees with 
Monte Carlo simulations [155]. The same tech- 
niques and also molecular dynamics simulations 
can probably provide a check on the profiles, 
and measurement of grafted layer thicknesses 
seems feasible by hydrodynamic layer thickness 
determination [ 1551. 

7.5. Solute distribution 

On allowing a monomeric solute A, we note 
that A could also be interpreted as another 
solvent and the results apply to mixed solvents 
also. The total amount of segments of type A, 
0,, in eqn. 60 is chosen to be 1 in 20 layers, 
being relatively high, but the amount retained in 
the grafted layer is still proportional to the bulk 
volume fraction, and the linearity of the adsorp- 
tion isotherm is ensured (Henry’s law limit). 
Indeed, the resulting shape of the solute dis- 
tributions does not change if 0, is lowered, and 
therefore the given distributions are relevant to 
analytical RPLC. The interaction parameters are 

XGO = 27 XAO = 2 and xAG = 0. These parameters 

apply, for instance, to an aqueous solvent, apo- 
lar grafted chains and apolar solute. 

We find (Fig. 7 in ref. 16) that the volume 
fraction of A in the grafted layer is higher than 
in solution, i.e., the capacity factor is in excess of 
1 and appreciable retention occurs. Comparison 
with the volume fraction prolile of grafted chains 
in the absence of solute shows that the profile of 
the grafted chains has changed owing to the 
uptake of solute: the boundary between the 
grafted chains and the solvent becomes less thin, 
being referred to as “a breathing surface” which 
adjusts itself to local conditions [17]. Although 
the effect is small, the solute is slightly enriched 
in the boundary region between grafted layer 
and solvent. The uptake of solute in the bound- 
ary region allows the grafted chains to form 
more tram bonds, i.e., to become more aligned, 
without an increase in the number of unfavour- 
able GO contacts. 

In poor solvents the grafted chains gain con- 
formational entropy if the solute is present in the 
boundary region, because it allows the grafted 
chains to protrude further into the solution. On 
the other hand, there are entropic restrictions: 
the space already occupied by segments of the 
grafted chains limits the uptake of solute in the 
interior of the grafted layer. 

At lower xAo values, i.e., when 0 is a better 
solvent for A, with the other interaction parame- 
ters kept unchanged, less A is taken up and the 
maximum in the volume fraction profile of A is 
more pronounced than for higher xAo. By their 
accumulation in the boundary region, the solute 
molecules A are capable of reducing the number 
of GO contacts, which are more unfavourable 
than AG and A0 interactions. 

On varying the solute chain length, the extent 
of partitioning in the grafted layer, and so 
retention, increase with increasing chain length. 
For example, in a poor solvent (higher xAo) the 
volume fractions of A, in the interior of the 
grafted layer are higher than for A, and A, 
because the solubility in the solvent decreases 
with increasing solute chain length. The distribu- 
tion of solute in the grafted layer becomes less 
homogeneous with increasing chain length, 
because conformational constraints make it more 
difficult to accommodate an r-mer in the interior 
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of the grafted layer than r monomers. In the 
boundary region, on the other hand, conforma- 
tional restrictions are less important and the 
grafted chains even gain entropy by solute up- 
take, just as in the case of monomeric solutes. 
This is in contrast with Dill’s theory (see the 
discussion in ref. 16). 

Results for the retention of short and am- 
phiphilic molecules, A,H and A,H (with inter- 
action parameters xno = 0 and xAH = xno = 2) 
represent, for instance, the case of an aqueous 
solution with alcohol molecules and an ahphatic 
grafted layer. The maximum of I~H is located 
nearer the solution side than that of the A 
segments. The presence of hydrophilic head 
groups obviously decreases the retention as the 
entire molecule is located more to the outside of 
the grafted layer. If the chain length of the solute 
exceeds the length of the grafted chains, the 
accumulation in the boundary region is even 
stronger. These long-chain molecules find them- 
selves predominantly at the G-O boundary 
because the presence of the grafted chains and 
the solid surface strongly restrict the number of 
possible conformations of A,,,, in the interior of 
the grafted layer. Experimental verification of 
the discussed profiles is only possible indirectly 
through retention behaviour, i.e., through the 
partition coefficient Ki (leaving out the super- 
script c, for simplicity), eqn. 61. 

For a given solute the retention depends on 
the solvent quality and for a monomer solute A 
we investigated the effect of xAo on the retention 
of A at xnc = 0. It appears that for a given value 
of xoo the retention increases with increasing 
xAo. Retention also increases with increasing 
xoo, except for very low xAo values. For all xoo 
values a practically linear relationship between 
xao and In KA appears to exist, as should be the 
case, and is often reported in experimental 
observations (see, e.g., Miickel and Freyboldt 
[159,160]). 

As an illustration, we first consider liquid- 
liquid partitioning of a trace amount of a mono- 
meric solute A between immiscible monomeric 
liquids 0 and G. For this system the relationship 
between In Ki and the difference in interaction 
parameters, xAG and xAo, is linear, as is ex- 
pressed for a regular solution by eqn. 4. For 

trace amounts of monomeric solutes and non- 
mixing, non-monomeric solvents this equation 
holds approximately. As we have chosen xAG to 
be zero, the relationship between In Ki and xAo 
is linear with a slope of unity and passes through 
the origin, as 2 contacts between A and 0 are 
replaced with 2 contacts between A and G. 

If we now consider the adsorption of isolated 
monomeric molecules A on a rigid G surface 
from solvent 0, a linear relationship between the 
volume fractions at the surface and in solution 
exists with a slope related to the adsorption 
constant KA (Henry’s law region). For otherwise 
identical conditions (identical x) the expected 
slopes of the In KA vs. xAo curves for liquid- 
liquid partitioning and for adsorption on a solid 
surface are not the same, even for regular 
systems: for liquid-liquid partitioning of mono- 
mer A with xAG = 0 the slope of In KA VS. xAo is 
unity (see above), whereas for adsorption the 
slope of In KA VS. xAo is A,, since only a fraction 
A, of the 2 contacts between A and 0 are 
replaced by AG contacts. 

For mutually soluble solvents in liquid-liquid 
partitioning (say, xoo = 2 with G the other 
solvent), the precise partitioning coefficient 
should be calculated with the extended Flory 
equations [28,37] instead of with eqn. 4, and a 
slope of In KA vs. xAo equal to 0.87 results. For 
the RPLC system (Fig. 8 in ref. 16), for the case 
xoo = 2, the slope equals 0.83, which is only 
slightly lower than 0.87. At low xoo the number 
of A0 contacts replaced by AG contacts is lower 
than for xoo = 2 and the grafted layer is pene- 
trated by a large amount of solvent. Neverthe- 
less, the slope of the In KA vs. ,yAo curve at 
xoo = 0 equals 0.43, much exceeding A, (0.25), 
the slope expected for adsorption on a rigid G 
surface. 

From these slopes and from the volume frac- 
tion profiles, it is clear that retention in RPLC 
cannot be modelled as adsorption on a rigid solid 
surface. The fact that the curves in In KA vs. xAo 
do not pass through the origin is a result of the 
arbitrary choice of the thickness of the grafted 
layer and the inhomogeneous distribution of the 
solute. For example, the crossing over of the 
curves at low xoo values (Fig. 8 in ref. 16) is an 
effect of the layer thickness, 4. At lower xoo, $ 
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is larger, leading to an increase in In Ki although 
the amount retained (and so ki) becomes small- 
er. 

The effect of xAo on the retention is more 
pronounced than the effect of xoo and xAG, i.e., 
the retention is to a large extent determined by 
squeezing the solute out of the solvent, a sol- 
vophobic effect. This explains the success of the 
application of the solvophobic theory [13], where 
only solute and solvent interactions are consid- 
ered. 

7.6. Chain lengths and composition of the 
solvent 

The chain length of the solute strongly affects 
the retention (much more strongly than the 
above xAo and xoo effects), as can be seen from 
the calculation of distribution coefficients of a 
homologous series A, in a G,, layer-solvent 
system as a function of the number n of A 
segments. Not unexpectedly, more or less linear 
relationships between the chain length and In Ki 
are obtained, in agreement with, e.g., the Mar- 
tire and Boehm theory [17]. We note, however, 
that the relationship between the solute chain 
length and the distribution coefficient is not 
exactly linear, a fact that becomes easily visible if 
we extend the calculation over a large range of n 
values, say from n = 1 to 30. The slope of the 
curve decreases slightly as the chain length 
increases, which can be attributed to the loss of 
conformational entropy of the solute on reten- 
tion. Only for solutes longer than about fifteen 
segments does the slope become virtually con- 
stant . 

A more sensitive way of demonstrating non- 
linearity of retention data for homologous series 
results when the ratio K(n + 1)/K(n) is plotted 
versuS n. The value of K(n + 1)/K(n) then de- 
creases with the number n of A segments instead 
of being constant according to Martin’s rule 
[6,39,42,43]. This is caused by the decrease in 
conformational entropy when the solute is dis- 
solved in the grafted layer, which increases with 
increasing solute chain length. It is illustrative to 
compare this behaviour with that of the liquid- 
liquid distribution coefficient. As we are dealing 
with partly miscible chain molecules, we again 

choose the extended Flory equations to calculate 
the distribution equilibria of A,, between 0 and 
a liquid consisting of A,, chains. The slope 
obtained for the RPLC system at xAo = 2 is 
about 1.06, whereas in the liquid-liquid system a 
slope of 1.12 is calculated. For xAo = 1.5 these 
values are 0.60 and 0.66, respectively, and for 
xAo = 1 we find 0.20 and 0.26, respectively. 
These figures show that in all instances the solute 
molecules are better “solvated” in the A,, liquid 
than in the Gi8 grafted layer. 

To study the effect of the presence of a 
hydrophilic head group in the solute on the 
retention of homologous series, calculations 
were performed for homologous series of A,H 
molecules (e.g., alcohols) with interaction pa- 
rameters xAo = xG0 = xHA = xHG = 2 and xH0 = 

,yAG = 0. Comparison of the results with those for 
A, shows that the presence of a hydrophilic head 
group reduces In Ki, especially for small values 
of n. For high n the slope of the (approximately) 
linear part of the curve In K vs. n is about the 
same as (slightly less than) in the case of non- 
polar A,, molecules. Our calculations also show 
the effect of the grafted chain length on reten- 
tion of A,H. 

The general picture arises that the relationship 
In Ki VS. n, is non-linear and even more so for 
short grafted chains. The distribution coefficient 
of alcohols depends on the grafted amount and 
for constant grafted density (a = 0.3 in all calcu- 
lations for all chain lengths) on the chain length 
of the grafted chains. For short-chain alcohols, 
In Ki increases with decreasing grafted chain 
length, because alcohols tend to accumulate in 
the boundary region between grafted chains and 
solvent. In contrast, for long-chain alcohols In Ki 
increases with increasing grafted chain length, 
because for short grafted chains the grafted layer 
is too thin to accommodate long solutes without 
a significant decrease in entropy. For the same 
reason the slope of the curves depends strongly 
on the grafted chain length up to G,, leading to 
intersection of the curves In Ki vs. n (for exam- 
ple, the G, and G, curves cross over with G, 
near ni = 4). The G, and G,, curves are close 
together, nearly parallel and almost linear with 
the G,, curve slightly below the G, curve. 
Expressed in terms of capacity factors, using 
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eqn. 65, the curves of In k vs. n no longer cross 
over, because in the capacity factor the changing 
volume of the stationary phases is accounted for. 
Hence, for all n the capacity factor increases 
with increasing grafted chain length, especially 
for the shorter chains (and provided that u is the 
same). For grafted chain lengths between 8 and 
18, the difference in retention becomes small, 
which can be attributed to the fact that the 
alcohols are accumulated preferentially in the 
boundary region. 

Experimentally, linear relationships between 
In k: and the chain length have been obtained 
for many homologous series (see, e.g., refs. 159- 
168). Mockel [Xl] recently obtained very pre- 
cise measurements and demonstrated a strong 
case in the experimental proof of the linear 
relationship. Karch et al. [161] presented mea- 
surements for the retention of a series of al- 
cohols on reversed phases of different chain 
lengths, the slopes of which agree with our 
calculations. We note that these experiments 
were not carried out at the same surface den- 
sities for all chain lengths studied. The existence 
of a limiting length of the grafted chains, i.e., a 
length beyond which no further increase in 
retention occurs, has also been confirmed by 
experimental studies [ 161,162]. 

The non-linearity of In Ki VS. n as found here 
for short-chain alcohols was demonstrated ex- 
perimentally [169-1711 for several homologous 
series in which a wide range of solute chain 
lengths were included. If we calculate again the 
value of K(n + 1)/K(n) for A,H molecules, we 
observe the same behaviour as for non-polar 
molecules, viz. , a decrease with increasing 
number IZ of A segments. The deviations from a 
horizontal line are more evident in the case of 
polar A,H molecules than for non-polar A,, 
molecules, but at long chain lengths (n > 15) the 
curves for A, and A,H coincide because the 
effect of the head group vanishes. Tchapla et al. 
[169] measured the retentions of various homolo- 
gous series on RPLC columns up to long solute 
chain lengths. Their results for a “polymeric” 
bonded phase (PBondapak) agree very well with 
the above and indeed a continuously decreasing 
curve was obtained for K(n + 1)/K(n) vs. 12. For 
“monomeric” bonded phases, however, they 

observed that K(n + 1)/K(n) slowly decreased 
only for chain lengths of the solute smaller than 
the length of the grafted chains. If the solute is 
about as long as the grafted chains, a sharp 
break occurs, and for solutes longer than the 
grafted chains they again found a slowly decreas- 
ing ratio K(n + 1)/K(n) with increasing n. As 
seen from our discussion above, the sharp break 
cannot be explained on the basis of our theory. 

7.7. Retention as a function of the surface 
coverage 

In the above, we kept the surface coverage 
constant at u = 0.3, this being a typical value for 
available RPLC packings whose u values range 
between 0.22 and 0.44. Obviously, however, 
retention is strongly influenced by the grafting 
density and, to gain further insight, we calcu- 
lated distribution and capacity data as a function 
of u, ranging from its minimum value of zero 
(bare solid surface) towards its maximum of 1 on 
a surface with grafted chains of 18 segments. To 
scale the results we divided the calculated dis- 
tribution data by the liquid-liquid (C,,-0) 
partition coefficients for the solutes, as calcu- 
lated with the extended Flory equations, and 
denoted as KicLLj. For all molecules a maximum 
in kilKicLLj as a function of u is found (see Fig. 
12 in ref. 16). At u = 0, no grafted chains are 
present and therefore retention is ideally zero, 
but actually very small as typically some re- 
tention by adsorption occurs because of the 
positive xAo value in polar solvents. If u = 1, the 
grafted layer forms a block profile, in which all 
chains must be perfectly aligned and retention 
can only occur by adsorption on the outer 
surface of the grafted layer. This leads to small 
values for ki / KiC LLj, as absorption is not possible, 
because all the lattice sites in the first 18 layers 
next to the surface are occupied by segments of 
the grafted chains. Thus, between these ex- 
tremes, two opposing effects cause the maximum 
in retention: starting with the bare solid surface 
and increasing u, the enlarged volume of the 
stationary phase results in more retention, but at 
large values of u the stronger ordering in the 
grafted layer causes a decrease in retention. 

It appears that with increasing solute chain 
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length the maximum retention occurs at lower 
coverages: for the monomeric solute A, the 
maximum in kilKicLLj at a value of 10 is located 
around u = 0.65, whereas for the oligomers A, 
and A, lower maxima of 8 and 6 are near u = 0.5 
and cr = 0.4, respectively. In fact, the whole 
function kilKi(LLj decreases with increasing sol- 
ute chain length at all values of o, which sup- 
ports the earlier observation that the insertion of 
chain molecules into a grafted layer is entropical- 
ly less favourable than that of monomers. If a 
hydrophilic segment is added to the solute chain, 
the relative retention kilKi(LLj increases much 
faster initially, reaching a high value of 15 at low 
u (about 0.2) and a maximum of about 18 at 
u = 0.45, but does not change much for the 
whole range of v from 0.2 to 0.6. This can be 
explained by the fact that amphiphilic molecules 
are preferably in the boundary region between 
grafted chains and solvent, which does not 
change very much when o is increased, as 
discussed before: for collapsed layers the bound- 
ary region shifts further into the solvent at 
increasing (+ without changing its density gra- 
dient. This explains why the relative retention 
remains approximately constant over a wide 
range of coverages. In practical RPLC systems, 
coverages above 50% are not available. The 
maximum in relative retention will therefore be 
hard to find, but saturation of retention as a 
function of surface coverage has indeed been 
reported for a number of systems [163,172,173]. 
The present results for high surface coverages 
are probably more relevant for the partitioning 
of solutes in membranes [8,10]. 

Not surprisingly, the SCFA theory gives not 
only a maximum in relative retention kilKicLLj as 
a function of surface coverage, but also in 
relative partitioning KilKi(,,). For all types of 
solute molecules, after an initially sharp increase 
a maximum is found at low o values ((T < 0.2) 
above which KiIKicLL) decreases gradually with 
increasing surface coverage to zero at u = 1. The 
decrease in Ki is caused by the increasing volume 
occupied by the grafted chains, so that less room 
remains for monomeric A, whose maximum is 
located near o = 0.05. For flexible chain mole- 
cules the maximum shifts to higher o as the 
solute chain length increases. At very low U, the 

effect of the presence of a non-interacting sur- 
face gives a reduction in retention caused by the 
loss of entropy (negative adsorption). As (T 
increases, the effect of the presence of the 
surface becomes less prominent since the con- 
formational restrictions, imposed by the surface, 
do not affect the solutes that are accumulated at 
a certain distance from the surface. 

Comparing these results with other theories, 
Martire and Boehm reported [17] that ki levels 
off as the coverage increases, whereas with Dill 
and co-workers’ theory [lO,ll] a maximum in the 
distribution coefficient of a monomeric solute is 
found as a function of the amount of the grafted 
chains at u = 0.33 (see Fig. 17 in ref. 10 and Fig. 
13 in ref. 11). This contradicts our findings for 
monomeric solutes. In Dill and co-workers’ 
theory a parameter qi describes the conforma- 
tional aspects of the grafted layer, but the exact 
meaning of qi is not clear to us; see our discus- 
sion in ref. 16, where we came to the conclusion 
that the maximum found with Dill and co-work- 
ers’ theory is probably an artefact, because that 
theory does not properly describe the conforma- 
tional statistics at low coverages and the maxi- 
mum at u = 0.33 in Fig. 17 in ref. 10 is probably 
caused by an inconsistent choice of the stationary 
phase volume, being the total volume of the 
grafted chains without intercalated solvent. 

Experimentally, Sentell and Dorsey [174] ob- 
served a maximum in Ki for naphthalene in 
RPLC at a surface density of 3 ~mol/m* and 
they explained their results using Dill and co- 
workers’ model for the retention of monomers. 
In view of the above this explanation is ques- 
tionable and in our opinion a better explanation 
is that naphthalene is a large molecule. At low 
surface coverage the presence of the silica sur- 
face will restrict the number of possible orienta- 
tions, leading to the observed initial increase in 
K,., just as predicted by our model. 

7.8. The retention mechanism of RPLC 

From our results for the distribution and 
retention as a function of interaction parameters 
and solute chain length, it seems that retention 
in RPLC resembles liquid-liquid distribution 
more closely than adsorption on a solid surface, 
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which is in agreement with the cited theories of 
Dill [9] and Martire and Boehm [17]. However, 
the volume fraction profiles we obtained prior to 
the calculation of the distribution coefficients 
show that solutes accumulate near the boundary 
between grafted chains and solvent. This stresses 
the fact that in order to obtain an accurate 
description of the retention mechanism in 
RPLC, the boundary region between grafted 
chains and solvent cannot be ignored as was 
done by Martire and Boehm [17] and cannot be 
treated as a simple planar interface as was done 
by Dill and co-workers [g-11]. To investigate 
this issue in more detail we compare our RPLC 
results with results obtained for liquid-liquid 
systems, for which the SCFA theory has also 
been used [137]. 

In order to compare the solute distribution in 
the two situations, volume fraction profiles were 
calculated. Fig. 3a shows the volume fraction 
profiles of 0, A,H and grafted G,, and Fig. 3b 
those of 0, A,H and a bulk liquid consisting of 
C,, chains, the segments C being identical with 

1.0 
7- 1.‘. 

Fig. 3. Retention in RPLC (G,,, o = 0.3) and liquid-liquid 
(C,,-0) partitioning for A,H. The total amount of A,H 
equals 2 equivalent monolayers; interaction parameters are 

XGO = x.40 = XAH = 2, xno = XAO = 0. Segment type C is 
identical with segment type G. (a) Volume fraction profiles of 
A,H, grafted chains G,, and solvent 0. (b) Volume fraction 
profiles of A,H, non-polar solvent C,, and solvent 0. (c) 
Volume fraction profiles of segments of type A and G (both 
aliphatic), their sum (G + A) and the volume fraction profile 
of grafted chains in the absence of solute A,H (dots). (d) 
Volume fraction profiles of segments of type A and C (both 
aliphatic), their sum (C + A) and the volume fraction profile 
of C at the C,,-0 interface in the absence of solute A,H 
(dotted line, arbitrary position). From ref. 16. 

the G segments. The bulk volume fraction of 
A,H in phase 0 is the same in both instances. 
The volume fraction of A,H in the C,, phase 
(far from the interface) is related to its bulk 
volume fraction in 0 through the liquid-liquid 
partition coefficient. The partition coefficient 
thus calculated is identical with that calculated 
with the extended Flory equations. 

It is seen that the volume fraction profiles of 
the alcohol are very similar in the two systems, 
both having clear maxima in pA at the phase 
boundary. Close to the solid surface the volume 
fraction of A in the G18 phase is, however, lower 
than that in the liquid C,, phase for entropic 
reasons: the presence of the surface and the 
grafted layer restrict the conformational freedom 
of A,H. The boundary region of the grafted 
layer and the solvent 0 is just as disordered as 
the boundary region of the C,,-0 interface. We 
may conclude that, if the grafted chains are not 
too short and the surface coverage is moderate, 
the solute distribution in RPLC is very similar to 
that in liquid-liquid partitioning. The main dif- 
ference occurs because of the limited volume of 
the grafted phase, so that both the region near 
the solid interface and the boundary with the 
solution are important and the distribution co- 
efficient is largely determined by the whole 
segment density profile. In liquid-liquid parti- 
tioning the C,, phase is a macroscopic phase and 
the inter-facial region has little influence on the 
liquid-liquid partition coefficient, and the parti- 
tion coefficient is determined by the bulk con- 
centrations in both phases only. 

For both the grafted layer-solvent interface 
(Fig. 3c) and the liquid-liquid interface (Fig. 3d) 
we plotted the sum of the volume fractions of the 
aliphatic segments A + G and A + C, respective- 
ly. The resulting profile of aliphatic segments for 
the modified surface (Fig. 3c) is comparable to 
the profile of G,, chains in the absence of solute 
(dotted curve), but it is shifted outwards. The 
total volume fraction of aliphatic segments (A + 
C) at the C,,-0 interface is shown in Fig. 3d, 
together with a profile of C,, chains in the 
absence of alcohol, and here, too, the two 
volume fraction profiles of the aliphatic segments 
are very similar. With the RPLC system, ac- 
cumulation of alcohol near the boundary region 
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changes the volume fraction profile of the 
grafted chains in such a way that an extension of 
the hydrophobic phase is established. Conse- 
quently, the total number of unfavourable con- 
tacts between A and 0 hardly changes. This 
explains why a strong correlation between the 
liquid-liquid distribution coefficient and the re- 
tention factor Ki is obtained, even if the solute is 
not distributed uniformly in the grafted layer. In 
a non-uniform distribution, the increased 
number of contacts between solute and grafted 
chains is compensated for by a decreased 
number of contacts between segments of grafted 
chains and solvent. As long as the total volume 
fraction of grafted chains and hydrophobic solute 
is constant, their spatial distribution hardly af- 
fects the total interaction between the stationary 
and mobile phases. 

7.9. Specific effects in partitioning at chemically 
modified surfaces in RPLC 

In this section, several additional calculations 
are carried out for (1) solutes with a specific 
affinity for the surface, (2) mixed solvents and 
(3) solutes with different shapes. 

7.9.1. Specific adsorption of solutes 
In the foregoing solutes accumulate in or near 

a grafted layer because of an attraction between 
solute and grafted layer and/or a repulsion 
between solute and mobile phase. However, in 
some instances, the solute also accumulates 
because it has an affinity for the surface sites on 
which no grafted chains are anchored. This may 
lead to undesired effects such as “tailing”. In 
practice, such effects are often reduced by end- 
capping, i.e., methylation of the surface hy- 
droxyls, which renders the surface completely 
hydrophobic so that the surface-solute and 
grafted chain-solute interactions become very 
similar. The following calculated results illustrate 
the effects of a specific affinity of solute and/or 
solvent for the surface. 

Calculations were carried out for a system 
consisting of 20 lattice layers partly filled with 
grafted chains (G,,) in equilibrium with the bulk 
solution of an aqueous solvent (monomer W) 
containing a solute. As before, the surface cover- 
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age (T = 0.3, and consequently 18 - 0.3 = 5.4 
equivalent monolayers of G,, are present in the 
system. The solute is chosen to be a chain 
molecule consisting of five aliphatic segments of 
type A (identical with G) and one segment of 
type B (A,B). The Flory-Huggins interaction 
parameters (X,,) are taken as XAw = XAB = 2 and 
Xsw = 0, i.e., meant to be representative of an 
alcohol adsorbing from an aqueous solution on a 
C,, bonded phase. Note that with this choice 
segments B and W are identical. The bulk 
solution volume fraction of A,B is taken as 
3 - 10w3. The RIS scheme is used with the energy 
difference between a trans and a gauche con- 
formation of 1. kT. The surface is represented 
with an S and the X parameters between the 
various segments and the surface will be 
specified below. 

In Fig. 4a results for Xws = Xss = XAs = 0 are 
displayed, representing the case that there is no 
specific affinity for the surface, as discussed in 
the foregoing. In Fig. 4b the B segment of A,B 
has been given a specific affinity for the surface: 

XBS = -10, simylating a specific interaction be- 
tween B and silica. In this case segments B and 
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Fig. 4. Volume fraction protiles of A,B, grafted A,, and 
solvent W. CT = 0.3, lJ*’ = 1, bulk volume fraction of A,B is 

3 3. lo- . x Parameters: ,yAB = ,yAw= 29 xsw =O. (a) ,yAs = 
xes = xws =O; (b) xAs =xws =o, &=-lo; (c) /&=o, 

xws = xas = -10; (d) xAs = ‘4 xws = xes = -20. 
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W are no longer identical. The adsorption energy 
of B leads to accumulation of A,B near the solid 
surface side owing to “head-on” adsorption. As 
a result, the prafile of A segments now shows an 
additional maximum close to the surface, where 
some of the A segments of the grafted G,, = 
A,, chains have been displaced from the sur- 
face by A and B segments belonging to A,B. 
The solution-side of the volume fraction profiles 
remains almost unchanged. 

Fig. 4c and d give results for the case that not 
only the B segments, but also the solvent W have 
an affinity for the surface, so that B and W are 
identical again. In Fig. 4c xws = xss = -10 and 
in Fig. 4d xws = xss = -20. In these cases the 
accumulation of W in layer 1 is fairly pro- 
nounced. It has displaced almost all of the 
unanchored A segments from the surface and 
also all possible A segments of the grafted chain, 
as the volume fraction of A,, in layer 1 is close 
to its minimum value of 0.3. Even though the 
volume fraction of solvent in layer 1 is so high, 
additional A,B is present close to the solid 
surface in comparison with the situation in Fig. 
4a. 

The relative presence of W and A,B, where 

XWS = XBS, near the surface depends on a number 
of factors. The main factor of importance is that 
the bulk volume fraction of W is much higher 
than that of A,B. The latter is a chain molecule 
and we know already that it is more difficult to 
make space for it available near the surface. 
Note that the volume fraction profile of A,, in 
layer 2 in Fig. 4c and d is lower than that in Fig. 
4a, mainly to make space available for the A,B 
molecules rather than for W molecules. Al- 
though sterically it is unfavourable to have much 
A,B in the layers near the surface, the contact 
interactions between the aliphatic part of the 
A,B chain with the grafted layer are preferred to 
the AW contact interactions. Apparently, this is 
an important contribution because A,B is ac- 
cumulated significantly in layers 2 and 3 (as 
compared with Fig. 4a). The accumulation is, 
however, considerably less than in Fig. 4b, 
where the W segments have a low affinity for the 
surface, As seen, increasing the interaction pa- 
rameter xws = xBs from -10 to -20 hardly 
changes the situation. Already for xws = xBs = 

-10 almost all unanchored A segments are 
displaced from layer 1, so that a further simulta- 
neous increase of the affinity of B and W for the 
surface has no effect. 

7.9.2. Mixed solvents 
The retention of a solute can be reduced 

drastically by adding a co-solvent to W (water), 
which effectively changes the solvent strength. 
As stated before, with the SCFA model solvent 
mixtures and differences in size between various 
solvent molecules can easily be taken into ac- 
count. In the following calculations, the solution 
parameters are the same as in the previous 
calculations. All interaction parameters with the 
surface have been set to zero. The bulk volume 
fraction of A,B, from now on denoted A,W to 
stress that the head group segment of the solute 
is identical with the solvent, has been chosen 
much lower, viz., 1. lo-‘, to make sure that the 
Henry region of the adsorption isotherm is 
reached. 

Results for the retention of A,W from mix- 
tures of W and AW and from mixtures of W and 
A,W are plotted in Fig. 5a. At low volume 
fractions of co-solvent or modifier (m) the effect 
on the retention (k) is already marked; see Fig. 
5a and note the logarithmic vertical axis. In the 
literature [9,175] sometimes a linear relationship 
between In k’ and the volume fraction of metha- 
nol in water has been reported, which does not 
agree with the results presented in Fig. 5a or 
with the expected quadratic relationship as pre- 
dicted by the ESP model. Linear relationships 
are typically obtained for solvent mixtures for 
which the components have a low mutual inter- 
action (x) parameter, which is the case for 
methanol and water. For example, Dill [9] gives 
a x value of 0.42 between methanol and water. 

Apparently the calculated example in Fig. 5 
represents a more complicated system as no 
linear relationship is observed. To analyse the 
situation in more detail we consider the chemical 
potential of a solute i, /_+, in a solvent mixture 
[137,147] as 

Ap = In cpi + 1 - ri * ix qri 

+ iri * XC yC. X.q<Qpi - Qx)(Qy - Q$) (71) 
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Fig. 5. Retention of A,W as a function of mobile phase 
composition; solvent W, modifiers AW and A,W. A,, with 
CT =0.3, lJg’= 1, bulk volume fraction of A,W is 1. lo-‘. 
xAw = 2. All interaction parameters with the surface are set 
to zero. (a) Retention as a function of the volume fraction of 
modifier; (b) retention as a function of the shift in chemical 
potential of the solute, as calculated with eqn. 71; (c) “Dill” 
plot, (1 l(p,) In k as a function of cp,. 

where Ap = pi - py and the term py refers to the 
reference state of pure i. The subscripts i and j 
refer to molecules and the subscripts x and y 
refer to segment types. A certain segment type 
may be present in different molecules, for in- 
stance in the present case segment A is present 
in the co-solvent and the solute. The chain 
length of the various molecules is given by T~,~. 
Note that the volume fractions cp in this case are 
all bulk volume fractions (cp”), but we drop the 
superscript b for simplicity. The term cp$ is the 
volume fraction of segments of type x belonging 
to molecule i in the reference state, i.e., pure 
bulk of i. For A,W these values are 5/6 and l/6 
for segments A and W, respectively. 

In Fig. 5b, the results for the retention of A,W 
in W-AW and W-A,W mixtures are replotted as 
a function of the shift in chemical potential of 
A,W in the given solvent mixture using the 
above equation. The curves of A,W in AW and 
A,W fall on the same and almost straight line. 
This plot shows that indeed it is the chemical 
potential of the solute in the solution that essen- 
tially determines the retention. Thus, a simple 
relationship between the composition of the 
solution and retention exists, in which changes in 
the structure of the grafted layer are relatively 
unimportant, common knowledge in the practice 
of RPLC. 

Dill [9] used a plot of (l/q,,,) In k’ as a function 
of the volume fraction of modifier (m) for the 
case that the x parameter between the main 
solvent (s) and the modifier is high, and at not 
too low (pm a linear plot could then be obtained. 
This is in accordance with the present view 
because in the relationship for the chemical 
potential the term rp x cp appears. Since ‘p, can s sm m 
be written as 1 - q,,, if the volume fraction of 
solute is sufficiently low, a “quadratic” term can 
be defined [9]. Division of In k’ by cp, makes the 
linear terms in cp constant. Therefore, if the 
quadratic term dominates the retention behav- 
iour, the relationship between (llcp,) In k' and 
cp, is linear. 

Results in these terms are given in Fig. 5c and 
a reasonably linear plot is obtained for both AW 
and A,W at not too low cp,. This illustrates the 
importance of the quadratic term (see also 
Schoenmakers and co-workers [3-61). As we 
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have the equation of the chemical potential of 
the solute in a solvent mixture available, how- 
ever, we prefer to plot the chemical potential as 
a function of In k’, but in practice the linearity as 
demonstrated in Fig. 5c may be useful. 

From the fact that the W-AW mixture leads to 
a curved In k’(cp,) plot, we have to conclude that 
the W-AW mixture does not represent a water- 
methanol mixture, which would certainly give a 
straight line for this plot. The present W-AW 
mixture is more representative of a water- 
acetonitrile mixture. This complication arises 
because our way of modelling of water and 
alcohol is too simple (monomers without prefer- 
ential orientation, with every hydrophobic group 
represented by the same A segment and every 
hydrophilic group by W). 

Using monomeric B as the modifier with 
xwn = 0 and xAB = 1, a system resembling the 
water-methanol system more closely can be 
simulated. The results are shown in Fig. 6. In 
this instance an almost linear relation between 
In ki and the volume fraction of modifier exists, 
as already anticipated above. Note that the 
structure of the grafted layer changes with the 
volume fraction of modifier because of the differ- 
ence between xAw and xAB (see above). How- 
ever, the change is always small and it does not 
affect the linearity of this logarithmic plot. 
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Fig. 6. Retention of A,W as a function of mobile phase 
composition; solvent W, modifier M. A,, with c = 0.3, lJ*’ = 
1, bulk volume fraction of A,W is 1. lo-‘. ,yAw = 2, ,yAM = 1, 
,yMw = 0. All interaction parameters with the surface are set 
to zero. 

7.9.3. Solutes with different shapes 
In the above the resemblance between reten- 

tion in RPLC and liquid-liquid partitioning and 
the disorder of the grafted layer has been em- 
phasized. However, in some instances, molecules 
with an identical liquid-liquid partition coeffi- 
cient can be separated by RPLC. In this section 
we shall investigate the retention of A, isomers. 
As the isomers we modelled fully flexible linear 
A,, molecules (gauche-tram energy, Ug’ = 0)) 
branched (star shaped) A,, molecules with Ug’ = 
0, and A, rods, forced in an all-tram conforma- 
tion by putting Up’ to infinity. These solutes have 
identical liquid-liquid partitioning coefficients 
because, if calculated with the Flory equations, 
the shape of the molecules is irrelevant. For the 
RPLC calculations we used a surface modified 
with A, (U”’ = 1) and varied the surface cover- 
age, u. The interaction parameter xAw = 1.5. 
The bulk volume fraction of A, is 1. 10-12, again 
a lower value than in the previous calculations, 
because we shall investigate the effect of chain 
length while phase separation should be pre- 
vented. For the same reason we reduced the x 
parameter with respect to the previous calcula- 
tions. The results for n = 4 are given in Fig. 7a. 
For all isomers retention shows a maximum as a 
function of surface coverage, as discussed above 
(cfi ref. 16). Hardly any difference can be 
detected between rods, branched and flexible 
A,. For longer molecules, such as A,, Fig. 7b 
shows that the retention of the rods is lower. The 
reason for this is that in contrast to flexible 
molecules, rod-like molecules cannot adjust their 
conformation on sorption into the grafted layer. 

If we apply the SCAF (self-consistent aniso- 
tropic field) theory, bond cooperativity or align- 
ment can be taken into account [28,137,139]. 
Leermakers and Scheutjens used the SCAF 
theory to predict the gel-liquid transition in 
membranes. SCAF should not be looked upon as 
an extension of the SCFA used so far, because it 
has a different scheme for the calculation of the 
entropy. SCFA is an extension of the Flory 
solution theory to systems which are inhomoge- 
neous in one dimension. Far from the interface 
the composition of the system will be the same as 
calculated with the Flory equations. For SCAF 
this is not the case. As a result, the x-parameters 
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Fig. 7. Retention of A, isomers, rods, stars and flexible 
chains in A, (Us’ = 1) grafted layers as a function of the 
surface coverage. xAw = 1.5. (a) A,; (b) A,. 

chosen in SCAF cannot be compared with those 
in SCFA directly. 

In the calculated retention coefficients of A, 
and A, isomers with SCAF we now find that at 
high coverages the rods reach higher k values 
than the flexible molecules and the branched 
molecules. The rods and the chains of the 
grafted layer can align, which does not have 
much consequence for the entropy of the rods. 
Flexible chains will lose more entropy on align- 
ment and therefore their retention stay< lower at 
high coverages. Theoretically, we find alignment 
only at very high coverages, because alignment 
in the system can only occur perpendicular to the 
lattice layers. This might be an overestimation 
because a collective “tilt” or a local alignment of 
anchored chains is theoretically not allowed. 
Such alignment effects have been noted fre- 

quently in the literature [28,137,139]. The be- 
haviour of the branched molecules, which have 
one bond that cannot align with respect to the 
fully flexible chains, is more complicated and a 
chain length dependence is found: for A, the 
retention of branched (Le., star-shaped) chains is 
below that for the rods and the flexible chains 
(see Fig. Sa), but for A, the retention of the star 
molecules is between that for the rods and the 
flexible chains (see Fig. 8b). Branching intro- 
duces more stiffness in the isomers, which for 
short molecules leads to a decrease in the prob- 
ability of aligning and for longer chains to an 
increase in the probability of aligning’ with re- 
spect to the flexible chains. If we put Ug’ equal 
to infinity instead of to zero, the number of 
bonds that cannot align with the grafted chains 
increases as a function of solute chain length, 
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Fig. 8. Retention of A, isomers, rods, stars and flexible 
chains in A, (tY’ = 1) grafted layers as a function of the 
surface coverage. xAw = 1.5, SCAF theory. (a) A,; (b) A,. 
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and lower retention of the branched isomers is 
expected. 

It is interesting to look at the chain length 
effect. For instance, Tchapla et al. [169] stated 
that alignment stops when the chain length of the 
solute exceeds the length of the grafted chains. 
That this is not necessarily the case is shown in 
Fig. 9, where even A,, rods have in a high 
coverage A, layer a much higher retention than 
the flexible chains. However, it is important to 
note that alignment starts only at the higher 
coverages. For even longer chains some align- 
ment is still found (see Fig. 10). The chain length 
effect of flexible chains is very pronounced, as 
shown in Fig. lla and in agreement with the 
earlier results above and in ref. 16. For rods the 
chain length effect at high coverage is much less 
(see Fig. llb). Especially between Ai,,, A,, and 
A,, hardly any difference can be found at very 
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Fig. 9. Retention of A,, rods and flexible chains in A, 
(LIB’ = 1) grafted layers as a function of the surface coverage. 
xA,,,= 1.5, SCAF theory. (b) Enlargement of part of (a). 
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Fig. 10. Retention of (a) A,, and (b) A,, rods and flexible 
chains in A, (US’ = 1) grafted layers as a function of the 
surface coverage. xAw = 1.5, SCAF theory. 

high (+. The number of segments of these solutes, 
which can align with AS-grafted chains, is the 
same for these chain lengths and therefore the 
number of contacts with the grafted phase does 
not depend on the chain length. The number of 
contacts with the solvent does depend on the 
chain length, but for unknown reasons this seems 
to be not very important in this instance. Inter- 
pretation of these results for rods at unrealistical- 
ly high coverages for RPLC should be done with 
some reserve. 

Another interesting effect is that the partition 
coefficient of long rods (>A,) at low coverages 
is higher than those of flexible molecules. Rods 
do not lose much entropy on uptake in the 
grafted layer and therefore their retention at low 
coverage is considerably higher (see Figs. 9-11). 
We can distinguish three regions in the retention 
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Fig. 11. Retention of A, (a) flexible chains and (b) rods in 
A,, (U”’ = 1) grafted layers as a function of the surface 
coverage. xAw = 1.5, SCAF theory. 

of rods as a function of the coverage with grafted 
chains. At very low (+ the rods adhere pref- 
erentially because they lose less entropy on 
binding than flexible chains. At intermediate 
coverages the flexible chains adhere more 
because they can adjust their conformation and 
“fit in” the grafted layer in many different ways. 
At high coverages the rods can align (vertically) 
with the grafted chains, again without the loss of 
much conformational entropy, and therefore 
they are preferentially adhered as compared with 
the flexible chains. 

8. CONCLUSIONS 

The extended solubility parameter (ESP) 
model as reviewed in this paper, is based on an 
extension of the Hildebrand-Scatchard mixing 
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rule for enthalpic interactions. Using the internal 
pressure concept, we developed a four-parame- 
ter ESP model, which consists of classical 
symmetric interactions (dispersion and orienta- 
tion) and asymmetric electron- or proton (acid- 
base) transfer interactions. The entropic contri- 
bution to the free energy of mixing is accounted 
for by the (Staverman-)Flory-Huggins pseudo- 
lattice model. 

It is shown that, using reliable estimation 
procedures for the partial solubility parameters 
based on generalized thermodynamic functions 
and using modem equations of state, liquid- 
liquid distribution data can be predicted within 
20% from experimental data, also for polar 
systems as used in RPLC, FIA and engineering 
applications. This result is comparable to the 
predictions based on MOSCED and Hansch 
(octanol-water) methods. Improved predictions, 
within lo%, can be obtained by characterizing 
the system with well defined standard com- 
pounds analogous to the Rohrschneider ap- 
proach in GC. Again four main factors seem to 
contribute to the partitioning mechanism, 
proving that no important interactions (such as 
induction forces) are left out. The latter pro- 
cedure can also be applied to chemically bonded 
stationary phases used in RPLC, for which no 
reliable equations of state are available. 

To model these surfaces with grafted chain 
molecules in contact with a solution, the self- 
consistent field theory for adsorption (SCFA) of 
chain molecules has been extended, yielding a 
much more detailed picture of the behaviour of 
reversed-phase systems. If the solvent quality is 
poor for the anchored chains, the case most 
relevant to RPLC, the chains tend to form a 
separate phase with a thin interphase with the 
solution. Neither aliphatic nor amphiphilic solute 
molecules are distributed uniformly in the 
grafted layer, not even aliphatic chains in an 
aliphatic layer. Especially if the solutes are chain 
molecules they are predominantly enriched in 
the boundary region between grafted chains and 
solvent. For homologous series the distribution 
coefficient increases nearly linearly with increas- 
ing aliphatic chain length of the solute, with a 
slope depending on the solute-solvent interac- 
tions and, for small grafted chains, on the 
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grafted chain length. The small non-linearity is 
caused by entropic factors. The slope shows that 
retention in RPLC cannot be modelled as ad- 
sorption on a rigid solid phase, but it resembles 
liquid-liquid partitioning. 

Further, it appears that retention shows a 
maximum as a function of the surface coverage. 
With an increase in the surface coverage two 
opposing effects occur: the hydrodynamic vol- 
ume of the stationary phase increases and the 
effect of the presence of the surface becomes 
smaller, both effects leading to more retention. 
On the other hand, the ordering in the grafted 
layer increases, which leads to less retention. At 
grafting densities common in RPLC, retention is 
close to its maximum and contact interactions 
dominate the retention behaviour. On uptake of 
solute in or on a grafted layer, relatively un- 
favourable solute-solvent and grafted chain-sol- 
vent contacts are replaced by more favourable 
grafted chain-solute contacts and solvent is 
liberated. Consequently, we conclude that, at 
the usual coverages in RPLC, the capacity factor 
of a solute is strongly related to the liquid-liquid 
partition coefficient. The deviations from this 
correlation are most pronounced at low and high 
grafting densities. On adherence of solutes, the 
boundary between hydrophilic segments (sol- 
vent + hydrophilic solute segments) and hydro- 
phobic segments (grafted layer + hydrophobic 
solute segments) is hardly altered but it is shifted 
towards the solution by enrichment of the hydro- 
phobic segments near the outer region of the 
grafted layer. 

To describe specific effects on partitioning and 
retention in RPLC, the SCFA theory can easily 
be adjusted. In this paper three systems to which 
these theories can be applied have been dis- 
cussed. The calculated effects of specific affinity 
for the bare solid surface and that of mixed 
solvents are in qualitative agreement with experi- 
ment. In order to describe shape selectivity, a 
different, but related theory, SCAF, must be 
applied. Calculated results indicate that shape 
selectivity depends mainly on the size of the 
molecules (i.e., chain length) and the grafting 
density. Whether or not alignment of the solute 
molecules with the grafted chains can occur is 
another important factor. 
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9. SYMBOLS 

a 

2 
A 

IAI 
AlI 
B 
C 

c 

c or CED 

‘h 

c 

ci 

D 
D 
ESP 

f “(-4 

Af 
F, 9 
ss 
FH 
FIA 

g 

g+, g- 
G 

G,(z) 

Gx,i(z) 

Gi(zJ) 

G&P,) 

G” 

length of segment 
term in binomial function, eqn. 43 
segment type A, usually a hydropho- 
bic segment 
constant in equations (e.g., eqn. 6) 
matrix of a, 
chain of n segments of type A 
constant in equations (e.g., eqn. 6) 
conformation of a chain molecule 
expressed in layer numbers z where 
segments are present 
= n/V average molar concentration 
= -u/v, cohesive energy density 

constant after Miinlieff and Jaspers 

[I541 
constant in equations (e.g., eqn. 6) 
normalization constant for molecules 
i 
diameter 
= a* / &r, diffusion coefficient [ 1131 
Extended solubility parameter 
model 
fraction of segments of conformation 
c in layer 2 
number of degrees of freedom 
force; potential field force 
= Hz, entropic spring force 
Flory-Huggins 
flow-injection analysis 
number of segments in blob; free 
energy per segment; gauche 
gauche conformations 
=iCnipi=H-TS, Gibbs free 
energy 
= exp[-u,(z)lkT], weighting factor 
(probability) for segment x in layer z 

= exp{-[U,,i(z)lkT]], statistical 
weight for segments x of molecule i 
in layer 2 
segment weighting factor for seg- 
ment s of molecule i in layer 2 
end segment distribution function in 
layer 2 of molecules i (s segments 
long) with segment 1 in an arbitrary 
layer 
grafted chain of n segments of type 
G 
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h 
Ah’ 
H 

H 

HDC 
k= 

kl 
ki 

k; 

Kf 

KY 

Ki(LL) 

1 

L; L 

2? 

m 

M;M 

Ml 

n 

N 

0 

P 
P 
9? 

4i 

d 

E” 

r 

rc 

partial molar enthalpy 
latent heat of vaporization 
segment type H, used for the hydro- 
philic headgroup of the solute 
= U + pV, enthalpy; spring force 
constant (Hooke) 
hydrodynamic chromatography 
permeability factor 
Henry’s Law constant 
alternative capacity factor 
= (ti - t,)lt,, capacity factor of sol- 
ute i 
= E,,IE,, = K~(u,lu,), partition co- 
efficient based on concentrations 
= Xisl&, mole fraction-based parti- 
tion coefficient 
liquid-liquid partition coefficient of 
solute i 
= (ry average end-to-end dis- 
tance in chain 
= Nu, Kuhn length of chain mole- 
cule; number of lattice sites per layer 
length of a cigar-like grafted chain 
consisting of blobs 
mass; count number (of interac- 
tions) , power, monomer 
number of lattice layers; molecular 
mass 
molecular mass of monomer seg- 
ment 
number (of segments, segment type 
in a chain, moles, molecules, sites) 
total number (of segments, sites, 
etc.) 
segment type 0, used for the mono- 
meric solvent 
pressure 
Langmuir partition ratio 
= (dul&),, the internal pressure 
segment weighting factor for layer i 
in Dill’s theory 
number of parallel bonds of r-mer in 
conformation c 
mass flow-rate 
mass flow in the absence of polymer 
chain length in number of chain 
segments 
number of segments of r-mer in 
conformation c 
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(r2) = Nu* mean square end-to-end dis- 
tance in chain 

R 
R, = aN315 

gas constant; radius 
Flory radius of chain molecules in 
solution 

RST 
RIS 

s 

s’ 

S 
S 
#un)mix 

SEC 
SCAF 
SCF(A) 
t 

ti 

t0 

T 
l4 

u’(z) 
ux(z) 

us 

AU’ 
u 
U8’ 

V 

V’ 

% 

*liq 

V 
gas 

V 

VI_ 
V, 
v, 

z 
X 

zi 

Z 

regular solution theory 
rotational isomeric state approxima- 
tion 
solvent; = 1,. . . , r, segment ranking 
number in a chain; partial molar 
entropy 
segment ranking number of segment 
s’, next to segment s, see eqn. 56 
solid; surface 
entropy 
entropy of a (un)mixed system 
size-exclusion chromatography 
self-consistent anisotropic field 
self-consistent field (for adsorption) 
truns conformation; time 
residence (retention) time of solute i 
mobile phase residence (dead) time 
temperature 
internal potential energy per mole 
hard core potential in layer z 
potential for segments of type x in 
layer z 
=-,,C ,y,,[(cp,(z)) - cpt]kT, total in- 
teraction potential for segments x, y, 
including S 
molar heat of vaporization 
internal energy 
energy difference between a trans 
and a gauche conformation 
velocity 
= du / dz , velocity gradient 
= (M,/p,), molar volume of phase p 
molar volume of pure liquid 
molar volume of pure gas 
(phase) volume 
volume of lattice site 
volume of the mobile phase 
volume of the stationary phase 
= n,m,l W, mass fraction of i 
total mass 
coordinate, segment 
(average) mole fraction of solute i in 
phase p 
layer number, coordinate axis 
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term in binomial function eqn. 43 
number of neighbouring lattice sites 
= pu / RT compressibility factor 

QAZ) 

Qt:.(ZJ) 

Qxi(ZJ) 

volume fraction of segments x, 
belonging to molecules i, in layer z 
volume fraction of segments s of 
molecule i in layer 2 
volume fraction of segments s of 
molecule i in layer z, where seg- 
ments s must be of type x 
average fraction of contacts (seg- 
ments X) around a site in layer z 
= Qi(Z+ co), bulk vohtme fraction of 
molecules i 
solvent volume fraction 
grafted chain volume fraction in 
layer z 
Flory-Huggins interaction parame- 
ter for solute i in phase p: standard 
free energy Ap+IRT for transfer 
solute i from pure i to p 
degeneracy of r-mer in conformation 
C 

probability 

Greek letters 

A 

5 

rl 
‘is 

4 

A -1 

*ci 

Al 

u 
=P 

icy C 

7 ’ 

Qi 
40, 

+ip 

Qi(z) 

Qx (2) 

activity coefficient of i in p 
solubility parameter of i, square root 
of CED 
= V,lV,, the thickness of the station- 
ary phase, expressed in number of 
layers 
hydrodynamic layer thickness 
solubility parameter for hydrogen 
bonding 
difference between two quantities 
perpendicular coordinate to the wall; 
number of allowed bond angles 
viscosity 
amount of i retained in/at the 
stationary phase per surface site 
= n,r,lL, amount of i, with ri seg- 
ments, expressed in equivalent num- 
ber of layers 
fraction of neighbouring lattice sites 
in the previous layer 
fraction of neighbouring lattice sites 
in the same layer 
fraction of neighbouring lattice sites 
in the next layer 
chemical potential (partial molar 
free energy): pi = (~G/&z~)~,~,~~ 
product of terms in i 
density of the (liquid) phase 
=n chains iNSireS, surface coverage, 
grafting density 
-jj+ ‘, maximum surface coverage 
for separated chains 
summation of terms in i 
step time in random walk [113] 
= niuilV, volume fraction of i 
volume fraction of modifier in mo- 
bile phase 
average volume fraction of i in p 
(p =m, s) 
volume fraction of molecules i in 
layer z 
volume fraction of segments x in 
layer z 

(Qx(Z)) 

Cc;, ‘p; 

WC 

n 

Subscripts and superscripts 

:# 
acidic interaction 
basic interaction; blob; bulk 

C concentration based 
C conformation of a chain molecule 

expressed in layer numbers z, where 
segments are present 

d dispersion interaction 
D diameter 
e excess contribution 
ex exchange interaction 
ext external field 
H hydrogen bonding (acid-base) inter- 

action 
h enthalpic contribution 
i index for molecule i 
ind induction contribution 
int internal; interaction 
kin kinetic interactions 
L lattice based 
m mobile phase 
m modifier 
mix under mixed conditions 

“P non-polar interactions 
0 orientation interaction 
0 octanol; solvent 

P particle; polymer 
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P phase 
s entropic contribution; stationary 

phase; solid 
s solvent 
S solid 
T total 
V vaporization interactions 
X mole fraction based 

x7 Y indices for segment types 
0 standard condition 
8 overall 
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